微小領域の三次元形状を正確・簡単に計測する

-走査型プローブ顕微鏡 AFM5500M-

蓮村 聡 Hasumura Satoshi Wak

脇山 茂 Wakiyama Shigeru 伊與木 誠人 Iyoki Masato 安藤 和徳 Ando Kazunori

走査型プローブ顕微鏡は、サブナノメートルの高分解能で、 試料表面の形状と機械的・電気的物性を測定することが 可能な装置である。

株式会社日立ハイテクサイエンスは,産業計測用途での ニーズに応えるために,正確な三次元形状の計測ができ る走査型プローブ顕微鏡AFM5500Mを開発した。カン チレバーの自動光軸調整機構や測定パラメータ自動調整 機能を搭載することで、オペレータの負荷を軽減する簡単 操作を実現している。また、走査電子顕微鏡や走査型白 色干渉顕微鏡とのリンケージ機能を有することで、試料の 同一箇所の相補的な観察・計測や物性測定を可能とした。 本稿では、AFM5500Mとリンケージ機能について、測 定例を交えながら紹介する。

1. はじめに

走査型プローブ顕微鏡 (SPM: Scanning Probe Microscope) は、観察・測定対象物の表面近くで、先端が鋭く尖った針 をなぞるように動かすことでイメージを得る、顕微鏡の一 種である。走査型プローブ顕微鏡の観察イメージを図1に 示す。走査型プローブ顕微鏡の観察範囲は、数百マイクロ

図1 走査型プローブ顕微鏡による観察例

走査型プローブ顕微鏡の観察範囲と、それぞれの観察イメージを示す。原子 像を観察できる分解能を有する。 メートルから数ナノメートルであり、観察範囲を小さくす るとサブナノメートルオーダの分解能で表面形状を観察す ることができる。一般的に、観察イメージはPC (Personal Computer)のモニタ画面上に映し出されるが、そのイメー ジ画郭を10 cmとすると、見える倍率は1,000万倍以上に 及ぶ。

表面形状を観察する顕微鏡としては,走査電子顕微鏡や 走査型白色干渉顕微鏡がある。これらの顕微鏡は,走査型 プローブ顕微鏡に比べ,広い観察範囲からスピーディにイ メージを得ることができる。一方,走査型プローブ顕微鏡 は,水平・垂直分解能ともに優れており,三次元測長や物 性測定も可能である。よって,それぞれの顕微鏡を併せて 用いることができれば,互いの長所を生かした相補的な観 察・測定が可能になる。

ここでは、走査型プローブ顕微鏡の測定原理と構成を説 明し、2016年3月にリリースした走査型プローブ顕微鏡 AFM5500Mについて紹介する。

2. 走査型プローブ顕微鏡の測定原理

2.1 測定原理

走査型プローブ顕微鏡の測定原理を図2に示す。先端が 鋭い針(探針,プローブ)は、カンチレバーの先端部に形 成される。ここで、カンチレバーを振動させながら探針を

図2 走査型プローブ顕微鏡の測定原理

カンチレバーと試料の間に生じる力によってカンチレバーは変形する(斥力の場合はレバーがたわむ)。カンチレバーの変形は光によって検出する。

試料に近づけると,探針―試料間に生じる物理的な力に よってカンチレバーの振幅が変化する。カンチレバーの振 幅は,カンチレバー背面に照射した光によって検出される。

試料は、面内(X,Y)方向と垂直(Z)方向に微小に動か すことができるスキャナの上に設置される。探針(プロー ブ)を試料に近づけた状態でスキャナを面内方向に走査す ると、試料表面の形状に応じて探針と試料の間の距離が変

観察・測定ツールとして多くの分野で使用されている。

わり,結果としてカンチレバーの振幅が変化する。ここで, カンチレバーの振幅が一定になるようにスキャナを垂直方 向に制御しながらスキャナの移動量を三次元画像化するこ とで,試料表面の形状を得ることができる。

2.2 特徴とアプリケーション

走査型プローブ顕微鏡の特徴とアプリケーションを図3 に示す。三次元形状の高倍率観察・計測ができるだけでな く、コーティングしたカンチレバーを用いたり、スキャナ やカンチレバーを振動させたりすることで、試料表面の物 性情報も得ることができる。また、大気中、真空中、液中 での測定も可能なことから、多種多様な分野で活用されて いる。

3. 走査型プローブ顕微鏡AFM5500M

3.1 高精度プローブ顕微鏡AFM5500M

微細化が一段と進む電子部品や高機能材料,精密部品な どでは,開発・製造・品質管理分野で,より高分解能な計 測ができる走査型プローブ顕微鏡への期待が高まってい る。この要求に応えるために,高精度化・自動化を追求し たSPMとしてAFM5500Mを開発した。AFM5500Mの外 観を図4に,主な仕様値を表1にそれぞれ示す。

図4|走査型プローブ顕微鏡AFM5500M

高精度化・自動化を追求したSPMとして2016年3月にリリースした。

表1 AFM5500Mの主な仕様

カンチレバー側に広域フラットスキャナを,試料側に自動XYステージを配置 した。走査範囲の広さ,計測精度の高さ,操作性 (自動化)が特長である。

項目	仕様
スキャナ走査範囲(観察範囲)	XY:200 μm Ζ:15 μm
非線形性	<0.2% (X,Y,Z)
面内直交度	<0.5°
面内上下動 (bow)	2 nm (50 µm エリア)
最大試料サイズ	∮ 100 mm, 厚さ 20 mm

図5 AFM5500Mの構成

新たに開発した直線性の高いXY200 µm広域フラットスキャナと、低ノイズ 位置センサーをカンチレバー側に装備した。

3.2 優れた計測精度の実現

AFM5500Mは、広い走査範囲を確保しながら高い計測 精度と高感度測定を達成するために、従来の走査型プロー ブ顕微鏡とは異なる手法を採用している。AFM5500Mで は、カンチレバー側に平行バネ機構にピエゾ素子を組み込 んだ広域フラットスキャナを配置し、カンチレバー近傍に 面内・垂直の3軸方向に対しての低ノイズ位置センサーを 加えている(図5参照)。従来のスキャナは、円筒型圧電 素子に起因する円弧エラーやZ軸方向の真直性に課題が あったが、AFM5500Mではフラットスキャナを採用し、 面内方向のスキャナの動きをセンサーで制御しながら垂直 方向のセンサーを読み取ることで、ゆがみのない三次元画 像を得ている。

シリコン基板上のアモルファスシリコン薄膜の段差の AFM5500Mによる測定例を図6に示す。従来のスキャナ では、円弧エラーが測定データに重畳するが、 AFM5500Mでは200 μ mの広域にわたって平坦性のよい 測定が行われている。

太陽電池に使用されるテクスチャ構造のAFM5500Mに

図6 │ アモルファスシリコン薄膜の段差測定例 従来装置による測定例を左に,AFM5500Mによる測定例を右にそれぞれ示す。 広領域にわたって平坦性が得られていることが分かる。

図7 太陽電池に使用されるテクスチャ構造の測定例 AFM5500Mによる測定例を上に、従来装置による測定例を下にそれぞれ示す。 Z軸方向の真直性,面内方向の非線形性などAFM5500Mの優れた基本性能を示している。

よる測定例を図7に示す。従来のスキャナでは、乙軸方向 の真直性が悪いため左右の角度が非対称に計測されてしま う。一方、AFM5500Mでは、結晶方位による左右対称な 立体構造を正確に計測できている。このようにAFM5500M では、SPM測定で問題となる形状のゆがみや非対称性の ない、精度の高い形状測定が実現されている。

3.3 測定の自動化による操作性の向上

観察・測定を行うまでのオペレータの手順を図8に示す。

図8 | 走査型プローブ顕微鏡の測定手順 従来の測定手順を左に,AFM5500Mの測定手順を右にそれぞれ示す。自動化 によって手順を大幅に簡素化した。

AFM5500Mでは、パターンマッチング技術などを用いて、 カンチレバーの装着や光軸調整を自動化するとともに、カ ンチレバーの振幅量やフィードバックのパラメータも自動 で調整できる機能を搭載した。これらの機能により、オペ レータは煩雑な作業を行うことなく手軽に観察・測定がで き、オペレータ起因の測定誤差を排除することも可能に なった。

4. 観察装置間のリンケージの試み

冒頭に述べたように、複数種類の顕微鏡を併せて用いる ことができれば、互いの長所を生かした相補的な観察・測 定が可能となる。このために、共通ホルダと座標リンケー ジ機能を用いた、簡単かつ迅速な同一箇所の複数種類の顕 微鏡による観察技術を構築した(図9参照)。

走査電子顕微鏡と走査型プローブ顕微鏡を用いて, CVD (Chemical Vapor Deposition)成長単相グラフェン/ SiO₂の同一箇所を観察した結果を図10に示す。走査電子 顕微鏡の観察像にあるコントラストの起源を調べるため に,走査型プローブ顕微鏡で測定した形状像と電位像を, 走査電子顕微鏡の観察像に重ね合わせた。その結果,走査 電子顕微鏡のコントラストの差は,走査型プローブ顕微鏡 で観察されるグラフェン1層分の高さに相当しており,ま た,グラフェンの層数などによって表面電位が違っている ことが分かる¹⁾。

図9 | 装置間リンケージの概念 試料の同一箇所を観察することは、共通ホルダを用いてアライメントマーク と測定箇所の座標を共有すれば可能となる。

図10 CVD成長単相グラフェン/SiO2の観察像 走査電子顕微鏡の観察像を左に、走査型プローブ顕微鏡の形状像と重ね合わ せた図を中央に、走査型プローブ顕微鏡の電位像と重ね合わせた図を右にそ れぞれ示す。

5. おわりに

ここでは、走査型プローブ顕微鏡の原理と特徴を述べ、 ナノ領域の研究開発から工業計測や品質管理に対応できる SPMとしてAFM5500Mを紹介した。

最新の走査型プローブ顕微鏡は,新開発のスキャナや低 ノイズセンサーなどによって高い計測精度を実現するとと もに,カンチレバー交換や光軸調整を自動化するなど,操 作性も大きく向上している。また,新たな試みとして,複 数種類の顕微鏡による同一箇所の観察・測定の例を示した。

これからも産業計測用途でのナノ計測ニーズは膨らむと 予想され、より高精度・高速・高分解能化をめざして装置 開発を進める。また、複数種類の顕微鏡とのリンケージを 推進して観察から分析・計測を容易に実現可能とすること で、顧客にトータルでのソリューションを提供していく。

参考文献

 Y. Hashimoto, et al.: Correlative Characterization of Graphene with the Linkage of SEM and KFM, M&M予稿集 (2016.7発表予定)

執筆者紹介

株式会社日立ハイテクサイエンス 設計本部 分析設計部 所属 現在,走査型プローブ顕微鏡の開発,マネジメントに従事

脇山 茂

蓮村 聡

株式会社日立ハイテクサイエンス 設計本部 分析設計部 所属 現在,走査型プロープ顕微鏡の開発に従事

伊與木 誠人

株式会社日立ハイテクサイエンス 営業本部 応用技術部 所属 現在,走査型プローブ顕微鏡のアプリケーション開発に従事

安藤 和徳

株式会社日立ハイテクサイエンス 設計本部 分析設計部 所属 現在,走査型プローブ顕微鏡の開発に従事

