U.D.C. 669.14.781

B 鋼 の 研 究 (第1報) --変態点及び組織に及ぼすBの影響 小 野 健 二* 根 本 正**

Study of Boron Steels (Report 1) --Effect of Boron on Transformation Point and Microstructure--

> By Kenzi Ono and Tadashi Nemoto Hitachi Research Laboratory, Hitachi, Ltd.

Abstract

How boron influences the transformation point and microstructure of steel is discussed in this article, based on the results of the writer's experiment with specimens molten in a vacuum furnace and specially heat-treated or carburized.

Observations of the same experiment, contracted in few lines, may be given as follows:

- (1) A minute addition of boron makes rise, though slightly, the transformation temperature of steel.
- (2) Boron constituent appears in ferrite grain and grain boundary of austenite.
- (3) Globularization of primary cementite on carburizing and pearlite is made easier with the increase of boron content.

[I] 緒 言

Bが鋼の材質改善に役立つものとして米国に於て盛に 研究がなされB処理鋼として実用に供されている⁽¹⁾。又 我国に於ても最近各所で含B鋼の研究がなされているが ^{(2)~(7)}、著者等は先ずB量と変態点、特殊な熟処理によ る組織及び滲炭組織に就いて二三の実験を行つた結果に 就いて報告する。

〔Ⅱ〕試料及び実験

炭素鋼 (C=0.6%) に B を 0.025% 以下の範囲に添 加した7種の含B鋼を真空熔解して窒素含有量の低下を 図り、且つその量をほゞ一定になし得るようにした。熔 解原料として炭素鋼は 950°C の水素気流中で処理後用 いられ、又Bは細粒の Fe-Ti-B 合金から添加された。 又激量含まれる酸素及び窒素は少量の Mn, Al (0.05%) と Ti (0.1%) の添加により脱酸され、又安定な窒化物 が作られBの添加を容易ならしめた。第1表は Fe-Ti-B合金の組成、第2表は試料の化学成分を示す。

- * 日立製作所日立研究所 工博
- ** 日立製作所日立研究所

第1表 Fe-Ti-B 合金の成分(%)

Table 1. Composition of Fe-Ti-B Alloy

С	Al	В	Ti
0.013	11.10	1.82	17.49

第2表 試料の化学的成分(%) Table 2. Chemical Composition of

Specimens (%)

試番	С	Si	Mn	B (配合量)	摍	Ĵ	要
B-1	0.58	0.81	0.46	0.025	含	в	鋼
B-2	0.49	0.77	0.48	0.016	含	В	鋼
B-3	0.60	0.57	0.48	0.013	含	в	鋼
B -4	0.44	0.53	0.44	0.010	含	В	鋼
B-5	0.53	0.60	0.47	0.005	含	В	鋼
B-6	0.61	0.65	0.46	0.003	含	В	鋼
B-7	0.52	0.64	0.42		無	В	鋼

鋼塊を10mm丸に鍛伸後6mm¢に線引し熱膨脹測 定試片(5mm¢×70mml)と顕微鏡及び滲炭試片(10

1638	昭和28年11月	日	<u> </u>	評	論	笛	35 巻	笛 11 号	
				F* *	Helling .	27	00 1	HAT II H	

mmø×10 mml) とを作成して 850°C で真空焼鈍を行 つて以下述べる各種の実験に供した。試番 B-7 は参考 試料で無B鋼である。

まず本多式全熱膨脹計により 0.8°C/min の加熱及び 冷却速度に於ける各試料の変態生起温度が測定された。 次に B Constituent の析出様相の探究には各試料を 1,200°C に 30 分間加熱後、予め 650°C に保持された 熱浴 (Pb+Sn 浴) 中に焼入れ1時間恒温処理してから 空冷したものが用いられ、又 925°C 6時間滲炭されたも のに就き滲炭組織に及ぼすBの影響が究明された。これ らの処理が施された試片の表面は脱炭層及び過剰滲炭層 の除去のため 2~3 mm 研削されて検鏡試料に供され た。検鏡には腐蝕液として 5% ピクリン酸アルコール溶 液又は過酸化ソーダが用いられた。

〔III〕 実 験 結 果

第3表は各試料の変態点を示す。これによればB添加 によりその変態生起温度は僅かに上昇し、その割合はB 量に比例する。又Bは Ac₁ 及び Ar₁ 点よりも Ac₃ 及び Ar₃ に及ぼす影響が大であることが知られる。

第1网 1200°C 为6650°C 区 1 時 第2网 1200°C 失 2 650°C 区 1 时 体的 日 100000 、 2 650°C

- 第1図 1,200°Cから650°Cに1時 間恒温処理後空冷された試料 B-2 (B0.016%)の顕微鏡組織
- ピクリン酸腐蝕 ×1,200
- Fig. 1. Microscopic-Structure of Specimen B-2 (B0.016%) which was Austempered for 1 Hour at 650°C from 1,200°C and Cooled in Air. Etched with Picric Acid. ×1,200

第2図 1,200 しから 000 しに1時 間恒温処理後空冷された試料 B-2 (B0.016%)の顕微鏡組織 Na₂O₂腐蝕 ×1,200

- Fig. 2. Microscopic-Structure of Specimen B-2 (B 0.016%) which was Austempered for 1 Hour at 650°C from 1,200°C and Cooled in Air. Etched with Sodium Peroxide. ×1,200
- 第3図 1,200°Cから650°Cに1時 間恒温処理後空冷された試料 B-3 (B0.013%)の顕微鏡組織
- ピクリン酸腐蝕 ×1,200
- Fig. 3. Microscopic-Structure of Specimen B-3 (B0.013%) which was Austempered for 1 Hour at 650°C from 1,200°C and Cooled in Air. Etched with Picric Acid. ×1,200

Fig. 4. Microscopic-Structure of Specimen B-3 (B 0.013%) which was Austempered for 1 Hour at 650°C from 1,200°C and Cooled in Air. Etched with Sodium Peroxide. ×1,200

Fig. 5. Microscopic-Structure of Specimen B-5 (B 0.005%) which was Austempered for 1 Hour at 650°C from 1,200°C and Cooled in Air. Etched with Picric Acid. ×1,200

- 第6図 1,200°Cから650°Cに1時
 間恒温処理後空冷された試料 B-5
 (B0.005%)の顕微鏡組織
 Na₂O₂ 腐蝕
- Fig. 6. Microscopic-Structure of Specimen B-5 (B0.005%) which was Arstempered for 1 Hour at 650°C from 1,200°C and Cooled in Air. Etched with Sodium Peroxide. ×1,200

- 11 法 合合

B 鋼 の

研

究

第3表各試料の変態点(°C) Table 3. Transformation Point of Each Test Piece (°C)

÷+ ₩.	B%	加	熱	冷	却
武 奋	(配合量)	Ac ₁	Ac ₃	Ar ₃	Ar_1
B-1	0.025	729	770	713	680
B-2	0.016	726	760	702	675
B-3	0.013	725	760	715	675
B-4	0.010	725	755	695	665
B-5	0.005	726	760	690	670
В-6	0.003	723	750	690	655
B-7		723	752	690	670

第1図~第8図は各試料を高温度に加熱後 A₁ 点直下 の温度で恒温処理されたものの代表的組織を示す。第1 図、第3図、第5図及び第7図は5%ピリクン酸アルコ ール溶液により腐蝕、第2図、第4図、第6図及び第8 図は同試片を再研磨後過酸化ソーダにより腐蝕された組 織である。即ち第1図及び第2図は試料 B-2(B0.016% 配合)の場合で大きく角張つて黒く現われているもの(第 1図)又は僅かにうすく同様に腐蝕されているもの(第 2図)はいずれもパーライト、白い地はフエライト、結晶 粒界(オーステナイト粒界)及びフエライト粒内にそれ ぞれ鎖状又は微粒にみとめられるものは B constituent である。腐蝕液が過酸化ソーダの場合は B constituent

(第1報)

Fig. 8. Microscopic-Structure of Specimen B-6 (B 0.003%) which was Austempered for 1 Hour at 650°C from 1,200°C and Cooled in Air. Etched with Sodium Peroxide ×1,200

第9図 試料 B-1 (B 0.020%)の滲 炭組織ピクリン酸腐蝕

 $\times 400$

1639

Fig. 9. Microscopic-Structure of Specimen B-1 (B 0.02%) which is Cabulied for 6 Hours at 925°C. Etched with Picric Acid.

 $\times 400$

- 第10図 試料 B-4 (B0,01%)の漆 炭組織ピクリン酸腐蝕 ×400 Fig. 10. Microscopic-Structure of Specimen B-4 (B0.01%) which is Carburized for 6 Hours at 925 °C. Etched with Picric Acid. ×400
- 第11図 試料 B-5 (B 0.005%)の 滲炭組織ピクリン酸腐蝕 ×400 Fig. 11. Microscopic-Structure of Specimen B-5 (B 0.005%) which is Carburized for 6 Hours at 925 °C. Etched with Picric Acid ×400 第12図 試 炭組織ピク Fig. 12. Mic Specimen is Carburized for 6 Hours at 925 °C. Etched with Picric Acid ×400

- 105 -

第12図 試料 B-6 (0.003%)の滲 炭組織ピクリン酸腐蝕 ×400 Fig. 12. Microscopic-Structure of Specimen B-6 (B0.003%) which is Carburized for 6 Hours at 925 °C. Etched with Picric Acid. ×400

が茶褐色に現われ、パーライト内にもこれがみとめられ る。第3図及び第4図は試料 B-3(B0.013% 配合)の 場合でほゞ第1図及び第2図と同様な組織を呈している が、フエライト粒内に於ける B constituent の析出量は 試料 B-2 に比して少いことがわかる。第5図及び第6 図は試料 B-5(B0.005% 配合)の場合で B量の減少と ともに析出量が減少していることがわかる。又第7図及 び第8図は試料 B-6(B0.003% 配合)の場合でフエラ イト粒内の析出量は更に減少していることが知られる。

以上の結果からわかるように B constituent は結晶粒 界並びに粒内に鎖状又は微粒に析出するが、B量が減少 するにしたがい結晶粒界よりも粒内に於ける B constituent の析出量が減少するようである。

次に第9図~第12図は各試料の滲炭組織の代表的のも のを示すものである。これからわかるようにB量が多い 試料第9図及び第10図では、網状セメンタイトが結晶粒 界に生成されないで粒状化するので、結晶粒度の判定が 困難である。第11図の試料 B-4 (B0.001% 配合) に於 てはオーステナイト粒界に僅かな網状セメンタイトと粒 状セメンタイトとがみとめられるので、辛うじて結晶粒 度の判定ができる。更にB量が少い試料 B-6 (第12図、 あるが、これらはいずれも $r \rightarrow \alpha$ 変態に先行して析出し たものであろう。又滲炭組織を比較すると(第9図~第 12図) B量がますにしたがい初析セメンタイトが粒状化 する。本実験の範囲では B0.01%(配合)を境界として これよりB量が少い場合初析セメンタイトが網状に、こ れよりB量が多くなると初析セメンタイトが粒状に現わ れる。これはB量が増加するとrに対するCの固溶限が 減少し即ちB量がますと Acm 線の傾斜が急になるとと もに共析点が低炭素側に移行することによるものと考え られる。又滲炭により表層部に於けるC量が増加すると B constituent と推定されるものが過酸化ソーダで腐蝕 されるものと然らざるものとが存在することから、B constituent は C濃度が増加すると過酸化ソーダで腐蝕 されにくゝなるものと推察される。

〔V〕 結 言

以上含B鋼に就いてBが変態点並びに組織に及ぼす影響を究明した。これらの結果を要約すると下記の如くである。

(1) Bは鋼の変態点を僅かに高める。

(2) 含B鋼と無B鋼とは組織から容易に判別され

B0.003% 配合)では網状セメンタイトが明瞭に現われ 結晶粒は容易に判定出来る。無B鋼の試料 B-7 に於て は網状セメンタイトが最も明らかに現われる。又これら^t の試料は過酸化ソーダで腐蝕された場合 B constituen が着色されるものとされないものとがあり、後者はピク リン酸ソーダで着色される。

〔IV〕結果に対する考察

第3表から判るようにBは鋼の変態生起温度を僅かに 上昇させる。即ち Ar1 変態温度より Ac3 或は Ar3 変態 温度に及ぼす影響が大きいようであるがBが Fe-Ti-B 合金から添加されているのでBと同時に Ti 及び Al が混 入されるからB以外のこれらの元素が変態点に或程度影 響することは見逃せないであろう。又含B鋼を高温度に 加熱して結晶粒を著しく粗大化させた状態から A1 変態 点直下の温度で恒温処理すると B constituent がオース テイナイト粒界に鎖状に又はフェライト粒内に微粒に析 出する。これらの検出は鋼が多量のBを含有する場合ピ クリン酸アルコール溶液を用いて腐蝕すると容易にでき る。即ちこの場合 B constituent 自身は腐蝕されないが、 その粒界が腐蝕されるので形状並びに析出位置等から B constituent として判別される。又B量の多少に拘わ らず過酸化ソーダで腐蝕されると B constituent は茶褐 色に着色されるからセメンタイトと区別できる。なおB constituent には結晶粒界並びに粒内に析出するものが

- る。
- (3) パーライト中のセメンタイトはB量がますにし たがい球状化する。
- (4) 滚炭組織に現われる初析セメンタイトはB量が 0.01%以上を超えると球状化し、その傾向はB量 が増すにしたがい著しくなる。
- (5) B constituent は加炭されると過酸化ソーダで 腐蝕され難くなり、ピクリン酸ソーダで着色する。 なお含B鋼の機械的性質並びに熟焼入性に就いては次 報で報告する。

擱筆するにあたり御懇切なる御指導を賜つた村上先生 に対し謝意を捧げ、又御指導御鞭撻を賜つた兼先日立製 作所日立研究所長に対し敬意を表わすとともに、実験に 協力された赤津康之、柴田親昌両君と写真撮影に協力さ れた小林豊治君の労を多とする。

參考文献

- (1) 下田: 日本金属学会誌 16 (1952), A 239
- (2) R.A. Grange and T.M. Garvey: Trans. A.S.M.,
 (1946), P. 136~191
- (3) 今井、今井: 日本金属学会誌 B-14 (1951), P.
 52~56
- (4) 今井、今井: 日本金属学会誌 B-14 (1951), P. 57~60
- (5) 今井、今井: 日本金属学会誌 B-15 (1951), P.44
- (6) 長谷川: 金属 19 (1952), P.8
- (7) 長谷川: 鉄と鋼 38 (1952), P.54