空気遮断器内の高速気流の観測

Observation on the High-speed Air-flow in Air-blast Circuit-breakers

高砂 常 義* Tsuneyoshi Takasuna

内 容 梗 概

空気遮断器の遮断部内の高速気流を観測し,その特性を理解することは,遮断性能を向上させる上に 重要なことである。ここではシュリーレン法を用いて,縮尺したモデル空気遮断器内の気流の状況を観 測する方法およびその結果について述べた。

モデル遮断器には実物と相似関係にあるよう特に考案した立体モデルを使用し,また高速度連続シュ リーレン撮影装置を用いて,空気遮断器内の高速気流の過渡現象を解明することができた。さらに,こ の装置で気流状況と絶縁耐力との関係も明らかになり,性能改善に多大の効果をあげた。

1. 緒 言

空気遮断器(以下 A. B. B. と略称する)は電流遮断時 に高速気流によってアークを吹消し,その後も高速気流 によって絶縁を保持している。したがって,遮断性能は この高速気流の状態に影響されるところが多い。それゆ え,遮断部内における高速気流の状態を観測し,その特 質をよく理解していることは A. B. B. の遮断性能を向上 させる上に,きわめて重要なことである。たとえば, A. B. B. の電極間の絶縁耐力は静止高圧気体の知識から 説明しえない場合のあることが知られている⁽¹⁾が,これ らは高速気流を観測し,その特質をよく理解することに よって解明することができる。 モデル A. B. B. を使用する場合重要なことは,実物との 間に一定の相似関係が成立することである。もし相似性 の悪いモデル A. B. B. を使用したならば,そこから得ら れた結果はあまり信頼性がなく,実物の A. B. B. と同一 の現象になると推測するのは危険である。

従来から相似のモデルとして色々の方式が考えられ てきた。一つは空気の代りに水を用いた浅底水槽の方 法⁽⁷⁾⁽⁸⁾,ほかの一つは適当に縮尺されたモデルに圧縮空 気を用いる直接的な方法である。前者は高速気流と浅底

日立製作所ではこの点に着目して、早くからモデル A.B.B. による高速気流の観測を始めた。すなわち、昭 和28年に大形のシュリーレン装置を日立製作所日立研 究所内に設備し,以来高速気流に関する種々の問題を研 究してきた^{(2)~(4)}。さらに,昭和32年には,これに若干 の改良を加えた高速度連続シュリーレン撮影装置を完成 し, A.B.B. 遮断部内の気流の過渡現象が容易に観測で きるようになった(5)。ちょうど同じ頃、スェーデンの A.S.E.A. においても同様な研究がなされているが⁽⁶⁾, 多くは二次元流についてである。一般に二次元モデルか ら三次元の場合の高速気流の状況を推測することは困難 であるので, 筆者はモデルについて種々の検討を加えた 結果,三次元的モデルでシュリーレン写真を撮影する方 法を考案した。これと前述の装置とを使用して、種々の 貴重な結果を得た。ここでは、このモデルの構造、およ び高速気流の観測方法とその結果について報告する。

2. モデルの相似性の検討

気流測定には、ほとんどモデルを使用しなければなら ないので、モデルに要求される条件を検討しておこう。

* 日立製作所日立研究所

* 3¥

水槽内の水流との類似性を利用したもので,水面が広い 大気中に接触しているときは、水流は断熱指数2なる圧 縮性流体と相似であることが知られている。そして、水 深の二乗が圧力に比例し, 各部の水深を測定することに より, 圧力分布を求めることができる。この方法の長所 は、肉眼で流れの状態が観測でき、特に流線を知ること が容易な点である。他方, 欠点としては, 断熱指数 1.4 なる空気の場合と差があること、水の粘性の影響をうけ、 底面および側壁では摩擦の影響もうけること, さらに重 大な欠点は二次元の問題にしか適用できず、この結果か らすぐ三次元の気流状態を推測するのは困難なことであ る。これに対し, 直接空気を用いた方法は同一の流体で あるから,後述するように,より実際的であり,三次元 に適用できる上に, 過渡現象の観測もできる長所を持っ ている。ただし測定方法は少しめんどうで、通常、光 を利用したシュリーレン法または干渉計などが使用され る。そして、モデルは内部を透視できるようにしなけれ ばならない。そのため完全な相似は望めないが、モデル と実物との力学的相似性がよいほど、観測された結果が 実物をよく再現していることになる。

気流観測に使用されるモデル A. B. B. が実物と相似関 係にあるための条件は,空気を非粘性気体と考えると, 各対応点のマッハ数が等しいことである。A. B. B. では モデルが幾何学的に相似であれば,通常この条件は満足 されるから,結局は幾何学的に相似であることが重要で

----- 19 -----

ある。ただし,操作気圧が約 2 kg/cm² 以下では幾何学 的に相似であっても,対応点のマッハ数が異なってくる ので,操作気圧は十分高いことが必要であることはもち

ろんである。シュリーレン法を利用して気流観測を行う には、遮断部の1部に平行なガラス板を使用した透明な 窓をつけるので、円筒形の遮断部ではまったく相似のモ デルを作ることは困難である。しかし、できるだけ相似性 を高めるために、平行なガラス窓の部分を必要最小限に とどめ、さらに実物から若干変形された部分に対しては、 流路の断面積が相似関係にあってマッハ数が等しくなる よう考慮されねばならない。このようにすれば、実物とま ったく相似ではないが、二次元モデルとは著しく異なり、 三次元にかなり近くなって、三次元流の現象を観測する ことができる。そして、各部の気圧は実物とほとんど相 **似で**ある。このような三次元的なモデルを完全な三次元 モデルと区別するため、立体モデルと称している。

第1図は相似関係を満足するように作った三次元モデ ルと立体モデルの構造の例を比較して図示したものであ る。モデルと実物との相似の係数は次元解析を利用して 求めることができる⁽⁹⁾。すなわち,モデルの線縮尺度お よび操作気圧の低減圧力比とを適当に選んで行った実測 結果から,実物における現象および結果を推定すること ができる。この詳細については稿を改めて報告する予定 である。

3. 高速気流の観測方法

3.1 シュリーレン法とその装置 日立製作所日立研究所に設置したシュリーレン装置は

第3図 シュリーレン装置の凹面鏡

第2図に示すように,二つの凹面鏡を主体とするもので, その鏡径はわが国屈指の大きさを有している。装置は凹 面鏡のほか光源およびその電源と,シュリーレン撮影用 長焦点カメラおよびしゃ光板とからなる。簡単にこの原 理を説明しよう。

クセノンガス入り放電管にパルス電流を流し,2µs の 短時間だけ発光させると、スリットを通ったその光は2 つの凹面鏡を通ってしゃ光板上に像を結ぶが、一部の光 はしゃ光板をはずれてカメラにはいるように調整してお く。このときカメラの焦点は供試 A. B. B. に合わせてお く。もし供試 A. B. B. を通過するとき光が屈折すると、 しゃ光板上に光のふれを生じ、そのためカメラ内に明暗 の像を生ずる。明暗の程度はしゃ光板のしゃ光のしかた を調整して変化させることができるが、しま模様は供試

空気遮断器内の高速気流の観測

A.B.B. 内の密度変化を示しているので、気流の圧力状 態がわかる。気体の密度変化と光のふれとの関係は次の とおりである。いま、気体の密度を ρ 、その屈折率をNとすると,

の関係が成立する。ここに Noは密度 Po なる標準状態の 気体の屈折率である。したがって,

$$dN = \frac{(N_0 - 1)}{\rho_0} d\rho \dots (2)$$

の関係により,密度変化に応じた屈折率変化を生ずる。 光と直角な方向(x方向)に $\partial N/\partial x$ なる屈折率変化があ

第5図 高速度連続シュリーレン撮影用カメラ

し, A.B.B.の現象とドラムの回転速度とから、制御ス イッチの開閉を調節しなければならない。また、若干の くふうを行えば、A.B.B.の電極間の火花放電と同期さ せてシュリーレン写真を撮影することができるし, 電流 遮断後の気流状況を連続して撮影することもできる。

第5図は本装置のうち、回転ドラム式カメラの部分を 示す。レンズは供試品の大きさにより交換できるように なっている。

4. A.B.B. 気流観測結果

シュリーレン法により気流を観測すると、 圧力変化の

1585

ると、光が dy だけ進むときの屈折角 dθ は、

$$d\theta = \frac{1}{N} \frac{\partial N}{\partial x} \quad dy = \frac{(N_0 - 1)}{\rho_0 N} \frac{\partial \rho}{\partial x} dy \dots (3)$$

となる。これを y 方向の全通路について積分すれば, 屈 折角のは

$$\theta = \frac{N_0 - 1}{\rho_0} \int \frac{1}{N} \frac{\partial \rho}{\partial x} dy \dots (4)$$

となる。しゃ光板と供試 A. B. B. との距離をDとすると, しゃ光板上での光のふれはODとなり, Dの大きいほど 感度がよい。そのために、 凹面鏡の曲率半径の大きいも のが使用される。第3図は本装置に使用されている凹面 鏡の写真である。

3.2 高速度連続シュリーレン撮影法

1 36

高速度連続シュリーレン撮影装置は前述のシュリーレ ン装置とほぼ同じであるが、光源およびカメラに特殊な くふうがなされている。光源は放電管または放電ギャッ プを高速度に点滅するようにしたもので,通常2,000コマ /sで使用される。また、カメラはフィルムを高速度に移動 させるために回転ドラム式となっている。第4図は日立 製作所に設置した高速度連続シュリーレン撮影装置の概 要を示す。光学系の調整は前述のシュリーレン装置と同 じである。パルス発生機(または発振器)からの出力を増 幅し,光源用クセノン放電管をパルスに同期させて高速 度に点滅させると、それに応じて回転するドラムのフィ ルム上に一連のシュリーレン写真が撮影される。ただ 状況が明らかとなる。第6図はノズル内の噴流の状況を 観測するために、二次元モデルを用いて撮影されたシュ リーレン写真を示す。(a)は電極開離直後で、(b)から (d)に行くに従い電極間距離が長くなり、(b)以降はノ ズルで超音速流が発生している。図に明らかに示されて いるマッハ波の角度から, 超音速流はマッハ 1.6 に達し ていることが知られる。通常,シュリーレン写真は密度 変化を示すものであるが、細いしま模様から大体の流線 も想像できる。

第7図および第8図は立体モデルにより、片吹形およ び両吹形のA.B.B. について気流観測を行った例であ る。二次元モデルと比べると、気流の平均化された圧力 でシュリーレン写真が示されるために,感度が低下した と同様に見えるが,三次元流の現象をも忠実にとらえる ので、二次元モデルでは得がたい結果が得られる。たと えば,ノズルの中心に沿って細いすじが見られるのは, 円柱状の弱い回転気流が存在することを示しており,構 造に適切な考慮を払わないと、この回転気流は強力な円 柱状うずに発展することが知られる(第10図)。

第9図は毎秒 2,000 コマの速度で撮影したシュリーレ ン連続写真の例である。これは電極開離直後から 10 ms の間の現象で、気流状態が比較的良好な場合である。し たがって, 電極間にはうずが見られない。もし構造が不 適切であると,開離後数 msないし10 ms程度たってから

---- 21 -----

上: ノズル電極 (可動) 第7図 立体モデルによる気流状況 (片吹形)

> . 14 1 BAR

第9図 A.B.B.気流の過渡現象 (片吹形)

----- 22 -----

観測 断 器 内 0) 高 速 気流の 空 気 遮

1587

(片吹形)

強いうずが発生し、それが電極間を橋絡するため絶縁耐 力を一時的に低下させる現象を生ずる。たとえば、第10 図は構造が適切でなかったために、ノズルから円柱状の 強いうずが発生し,成長して電極間を橋絡した例である。 このときのシュリーレン写真の明暗の模様から, そのす じは密度の低い渦心であることが確認される。

また,同じ電極形状でも,うずの発生を防止するため に改良した場合の気流の例を第11図に示す。うずの防 止はある程度可能であり, 電極の形状のほかに気流の対 称性が重要な原因であることが明らかにされた。

第12 図は片吹形 A.B.B. の無負荷絶縁耐力特性の例

を示したもので、(a)は改良前、(b)は改良後の特性で ある。点線の部分は絶縁耐力がそれ以上であることを示 している。これらの特性とシュリーレン写真との同時測 定から,絶縁耐力の低下と円柱状うずの強さとは密接な 関係のあることが知られる。放電がうずの中心を好んで 通る極端な例を第13図に示した。この例は特に曲った うずを発生させる構造にした場合であるが、放電路がう ずの位置によく一致していることがわかる。ただし、シ ュリーレン写真は放電後 十数 µs たってから撮影されて いるので、放電路と電極は若干ずれて見える。(フィルム が回転しているためである)。

以上のいくつかの例に示したように、三次元に近い立 体モデルを使用し, 高速度連続シュリーレン撮影装置で 気流を観測することにより,従来二次元モデルでは観測 できなかった円柱状うずなどの現象を解明することがで きた。その上,次元解析を応用して,モデルで得られた よい結果を実物大の A. B. B. にまで拡張することが可能 であり,性能の改善に多大の効果をあげることができ た。

5. 結

A.B.B. の気流状況を知るために, 縮尺したモデルA.

言

1588	昭和34年12月	日 立	評	論		第	41	卷	第 12	2 号	
B. B. を	(使用し,シュリーレン法によっ)	て観測した例につ			参	考	文	献			
いて述	べた。気流状況を観測するには低	色々の方法が考え	(1)	L. R. 1	Bergström	W.]	Puc	her:	C. I	. G. R. E.	

いて述べた。気流状況を観測するには色々の方法が考え られるが,実物と相似関係にある立体モデルを使用し,シ ュリーレン法によるのが最良である。特に,高速度連続シ ュリーレン撮影装置を用いると,A.B.B.のような気流 の過渡現象も容易に解析され,二次元モデルでは明らか にされなかった三次元の気流現象が解明された。また, シュリーレン写真を電極間の火花放電と同時に撮影する と,そのときの絶縁耐力と気流との関係が明らかになり, 高速気流が絶縁性能に及ぼす影響を知ることができた。 これらのモデルの結果は,そのまま相似の係数を用いて 実物大の A.B.B. にまで拡張され,A.B.B. の遮断性能 改善に多大の効果をあげることができた。

- (1) L. R. Bergström W. Pucher: C. I. G. R. E. No. 105 (1958)
- (2) 牧, 島: 昭29電気学会東京支部大会予稿 No. 291 (昭 29-11)
- (3) 牧, 鴨志田: 日立評論 38, 297 (昭 31-2)
- (4) 高砂: 昭32 電気学会東京支部大会予稿 No. 123(昭 32-11)
- (5) 高砂: 昭33電気4学会連大予稿 No. 162 (昭 33-5)
- (6) W. Pucher: A. S. E. A. Journal 29, 107 (1956)
- (7) 板谷,富田: 機械学会論文集,21,18(昭30)
- (8) 富田: 機械学会論文集, 21, 22 (昭 30)
 富田: 同 上 22, 343 (昭 31)
 (9) 抜山: 次元解決の理論と応用(共立社 四
- (9) 抜山: 次元解法の理論と応用(共立社,昭 31)

とういうにたい 特許と新案 「公司」の公司

最近登録された日立製作所の特許および実用新案

(第18頁より続く)

種別	登録番号	名称	工場別	氏 名	登録年月日
特 許	253541	静止レオナード制御装置	日立研究所	小田田 芳 光 高 尾 滋	34. 8.10
実用新案	499517	接触変流機予備励磁装置	日立工場	橋本英明 柏木 学	34. 8.26
11	499521	水銀整流器点弧装置	日立工場	鈴 木 直 次	11
"	499524	水銀整流器陰極部	日立工場	今橋駒一	11
"	499529	ゲルマニウム整流装置	日立工場	高橋昭吉小川卓三	
"	499537	電 動 機 釣 掛 装 置	日立工場	有 并 英 俊	"
"	499719	回転電機の界磁線輪	日立工場	环 秀雄	34. 8.28
"	499732	原子動力設備用蒸気減温器	日立工場	松 本 政 吉 吉 柳 清 美	"
	499518	電磁保持式押ボタンスイッチ回路復帰装置	国分工場	酒 井 真 平	34. 8.26
"	499519	フロアコントローラ	国分工場	酒 井 真 平	"
	499520	ファアコントローラ	国分工場	酒 井 真 平	"
"	499530	蓄 電 池 自 動 充 電 補 償 装 置	国分工場	池 田 正一郎 宮 崎 徳太郎	"
	499531	蓄電池自動充電補償装置	国分工場	池 田 正一郎	"
//	499532	蓄 電 池 急 速 充 電 装 置	国分工場	池 田 正一郎	"
"	499533	蓄 電 池 自 動 充 電 装 置	国分工場	宮 崎 徳太郎	"
"	499534	蓄 電 池 急 速 充 電 装 置	国分工場	池 田 正一郎 宮 崎 徳太郎	"
//	499535	蓄電池自動急速充電装置	国分工場	宮 崎 徳太郎 池 田 正一郎	"
"	499536	蓄 電 池 遠 隔 充 電 制 御 装 置	国分工場	池 田 正一郎	"
"	499545	エレベータ乗籠呼寄装置	国分工場	藤 森 和 夫酒 井 真 平	11
	100715	光訊		大塚績	24 0 00
	499715	业設エレヘータ電源電動発電機起動装置	国分上場	酒 开 具 半	34. 8.28
//	499710	エレヘータ用フロアコントローラ	国分工場	小池吉男根本正男	1/
1/	499717	エレベータ走行距離積算装置	国分工場	石塚泰司	"
1/	499723	変圧器のバースチングチューブ	国分工場	今村 直 秋丸舜二	"
実用新案	499727	透明欄干エスカレータにおける移動手すり 折返部案内装置	国分工場	神 峯次郎	"

(第30頁へ続く)

(202)

---- 24 -----