最近の高分解能核磁気共鳴装置の進歩とその応用

——(II) 簡易形高分解能核磁気共鳴装置(R-24)の特徴と応用——

Recent Progress and Applications of High Resolution NMR Spectrometer

——Features and Applications of Compact Type High Resolution NMR Spectrometer R-24—

内海由春 Yoshiharu Utsumi 安 部 勝 信*
Katsunobu Abe

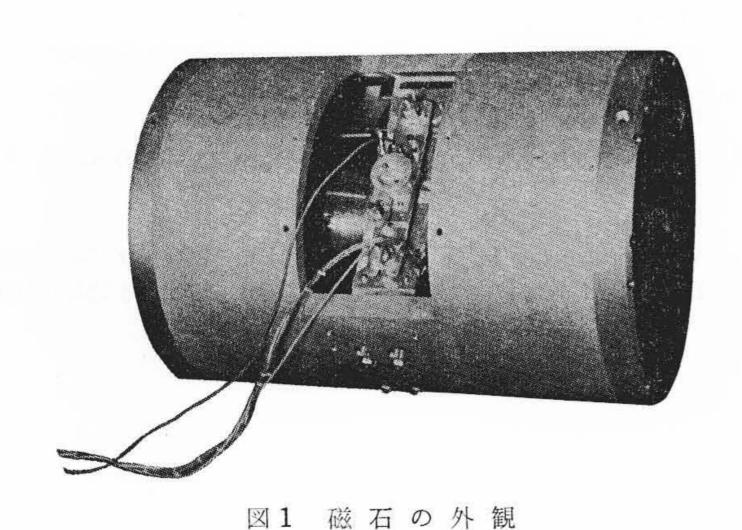
横 川 浩*
Hiroshi Yokokawa

1. 緒 言

有機構造解析における核磁気共鳴法の有用性は,赤外分光法と比較して表1に要約される。

こうした有用性を維持しつつ,価格を押え,操作上の複雑さを排除し,加えて従来の装置にない新しい諸機能を導入することとした。60~M~Hz の共鳴周波数を有し,水素核専用で通常の吸収スペクトルの測定と積分による定量分析が行なえる。また専任者による操作をまったく必要としないものとした。据付けは一日で完了でき,室温は $16\sim30$ の範囲を許し,空調室を必要としない。表 2 は仕様とおもな機能を示したものである。

2. 磁石の設計とその安定化


 7×10^6 G Oe のエネルギー積を有するアルニコ鋳造磁石(日立名称 HIMAG-II) を起磁力源として用い、ポールピースに高均一特殊パーメンダを用いた円筒形磁石で、その外観は図1に示すとおりである。

磁石の設計には起磁力発生部のエネルギー積を最大限に利用した Sparac と Tenzer の設計法を参考としている⁽¹⁾。

安定なスペクトルを うるために, 測定磁場変動を最小に押える必要がある。

磁場変動の原因には、(1)磁石の漏えい磁束を磁性物体がよぎることによる磁場変化 (2)外部に発生源をもつ磁場妨害 (3)ポールピース間隙(かんげき)の機械的変位 (4)温度変化による磁場ドリフトなどがある。これら磁場変動要因を極小にするための下記のような設計上の配慮がなされた。

まず漏えい磁束を小にするため、円筒形のヨークで磁石を包む構造にし、またヨークの磁束密度を $1\times10^4 \mathrm{G}$ 以下にし磁気飽和を防いでいる。 さらにヨーク材の一部をボックス焼なまし、 Hc を下げて、 μ 低下を防いでいる。

* 日立製作所那珂工場

外部磁場妨害に対しては、円筒形ヨークによる磁気遮蔽(しゃへい)効果に加えて、さらに二重のパーマロイ遮蔽を施して、通常のEE形の数十倍に遮蔽効果をもたせている。

磁石恒温槽(そう)を二重構造とし、それぞれ独立に制御した。さらに恒温槽間に熱的平均板を導入し、加熱ヒータによる熱供給が平均化される機構とした。図2に恒温槽システムを示す。

この方法で, 16~30℃ の範囲の外気温度変化に対し, 内部恒温槽の温度は35℃±0.01℃ に安定化している。

表 1 赤外分光法と核磁気共鳴法との比較

				±.	ы	分	N.	ψł:	核磁気	e 44- n	自 社
				亦	21	23	بار	伍	12× 10× ×	(大 "	局 伍
測	定	対	象	分	子	の	振	動	原子を	そのま	共 鳴
定	性	分	析			0				0	
定	量	分	析			0				0	
官	能 基	の区	別			0				0	
同			定			0				0	
検	出	感	度			\bigcirc				0	
术	リマー	の分	析			×				0	
試	料	0	相		固,	液,	灵		液	(気)	

◎:すぐれている ○:できる ×:不得意

表 2 R-24 の仕様と新しい機能

		表 2	R-24の仕様と新しい機能
仕		様	
核		種	1H (水 素 核)
共	鳴 周	波 数	60 MHz
磁	場	方 式	永久磁石方式
磁	場。	鱼 度	14,100 ガ ウ ス
分	解	能	$0.6 \text{ Hz} (1 \times 10^{-8})$
分	解 能 安	定 性	1.2 Hz/週
感	度	(S/N)	50:1 (5% V/V エチルベンゼンの CH ₂ の最大
			ピークの高さと実効雑音の比)
再	現	性	SHOULD USE SECTION OF THE SHOULD SECTION OF THE SE
積	分	青 度	5% (5% V/V エチルベンゼン試料でのフェニル
			基とエチル基の平均誤差)以内
記	録	計	記録面積 305×250 mm, ペン応答 0.5 秒, 較正
Tratica **	Earle Silver		チャート使用
掃	(9) di	方 式	磁場引
掃	引	速 度	Will Statement of the Control of the
		116/40/ 50400	3,600 秒も可能)
化	学シフト	、精度	
シ	フ	۲	50, ±600 Hz, 連続 1,000 Hz
掃	引	幅	Tracks (View 1986)
標	準 試 料		
試	料	管 径	The same of the sa
室		温	16~30℃ (温度変化 2℃/h 以内, 10℃/24 h 以内)
電		源	周波数 50 Hz または 60 Hz
			入力電圧 100 V (または 115 V, 200 V, 220 V,
			240 V) ±10%
			所要電力 400 VA 最大, 定常使用時 150 VA
寸		法	幅 94×奥行 78×高さ 81 (cm)
重		量	250 kg
そ	の	ほか	The second secon
			スコープが記録計と切換で接続可能
新	l v	機能	(1) 自動パラメータ選定
			(2) 新試料導入機構

(3) 自動スケール拡大およびシフト

(4) 共鳴強度読み出し回路

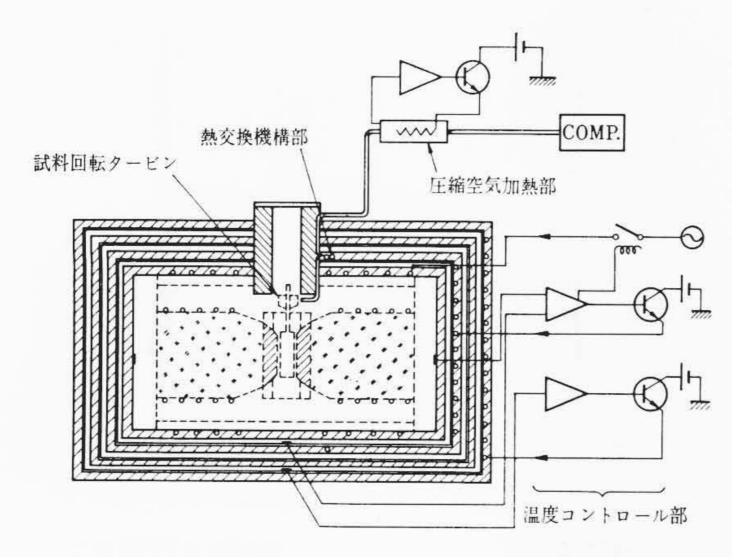


図2 磁石の温度安定化システム

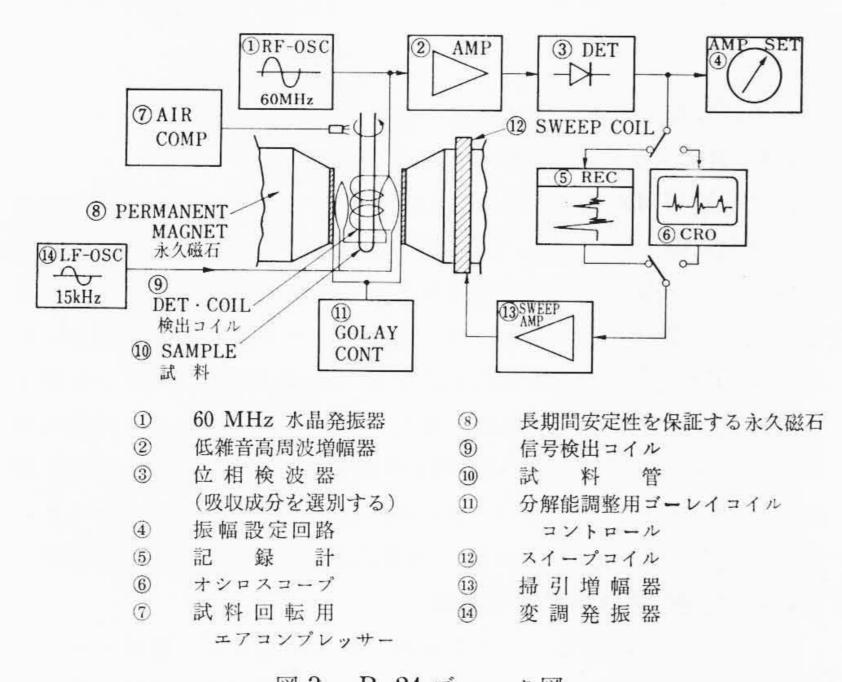


図3 R-24 ブロック図

3. エレクトロニクス系の設計とその特性

プローブより得られる微小な NMR (Nuclear Magnetic Resonance) シグナルを記録計およびオシロスコープに表示するまでのシステムは 図 3 に示すとおりである。最小入力信号レベル $0.1~\mu V$ を記録計で必要とする 10~mV にまで増幅するため,総合利得は 100~dB に設定される。利得の調整は記録計の前段において 3~dB ごと 15~a テップの減衰器で行なう。また増幅器の飽和を避けるため,増幅器の段間で 20~dB の利得調整を行ないうるようにしてある。

エレクトロニクス回路においては感度,積分精度,再現性などが 設計のポイントとなった。

(1) 仕様感度(S/N)50以上を得るために,雑音指数の小さなRF増幅器(雑音指数約3dB)を採用した。初段にはFETを使用し,全半導体化を行なって,プリント基板を採用したので,調整と保守が容易になり信頼性が向上した(図4参照)。

この半導体化は R-24 エレクトロニクス系全体について行なわれ、 IC の使用、プリント基板使用により信頼性の向上とともに、サービスの簡素化を図ることができた(図 5 参照)。

検出器によって得られる微小信号を損失なくRF 増幅器に導く ために、プローブとRF 増幅器間の整合をよくし、かつ最短距離 で接続し、感度向上を図った。

- (2) 積分精度をよくするため、入力換算ドリフト電圧が小さく、 またオフセット電流の小さな IC オペアンプを採用し、恒温装置 に固定した。
- (3) 標準発振器の周波数安定性は,再現性に直接影響を及ぼす

図4 RF 増幅器

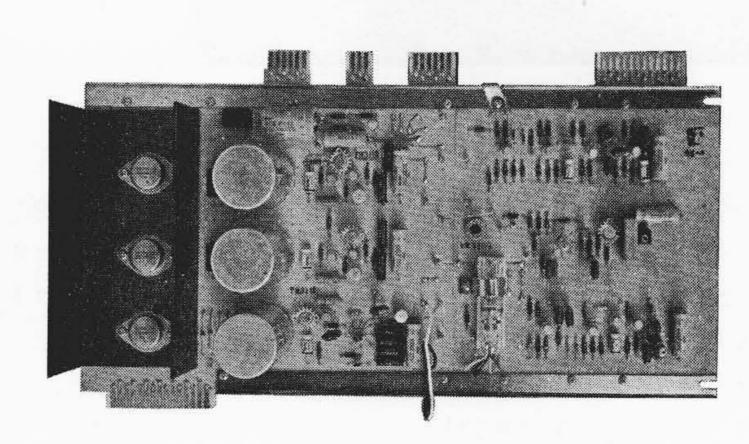
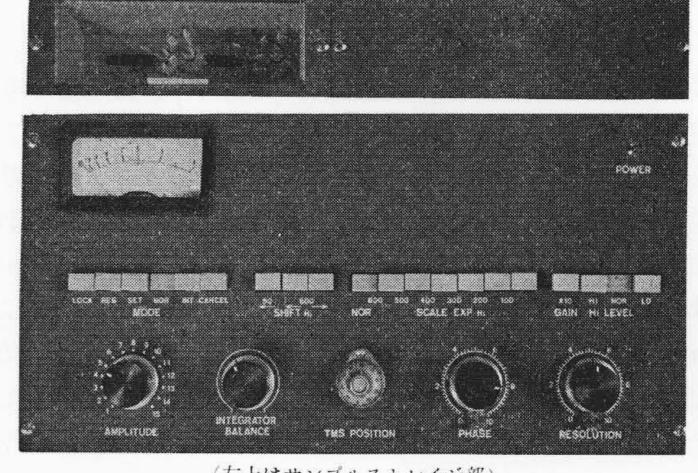



図5 プリント基板化された回路

(左上はサンブルストレイジ部)
図 6 操作パネル

ため下記のような安定化の処置を行なった。

トランスミッタには市販の水晶式発振器が使用され、装置外部の温度変化に対する安定性を増すため、トランスミッタ全体を温度制御されたサンプルストレイジに取り付け、さらにモールドされた発泡スチロール製の保温箱中に収納した。サンプルストレイジは恒温槽の役目を果たし、発振周波数を安定させる効果がある。

R-24 には磁場掃引方式を採用している。磁場掃引方式には周波数掃引方式に比べて吸収信号スペクトルの位相回りがないという特徴がある。同様な誘電率を有する溶媒を使用したり、ルーチン測定におけるような、同一溶媒を使っての測定においては、試料ごとの位相合わせが不要である。

掃引幅を選定する回路は従来のスペクトロメータにみられるような二つのつまみにより掃引の幅とシフト位置を独立に設定する方式に替えて、掃引幅とシフトを、プッシュボタンの1回の操作で行なえる方式にした。操作パネル(図 6 参照)の"Scale Exp"の左端はNOR (Normal)を意味し、通常の10 ppm (600 Hz) の掃引を行なう

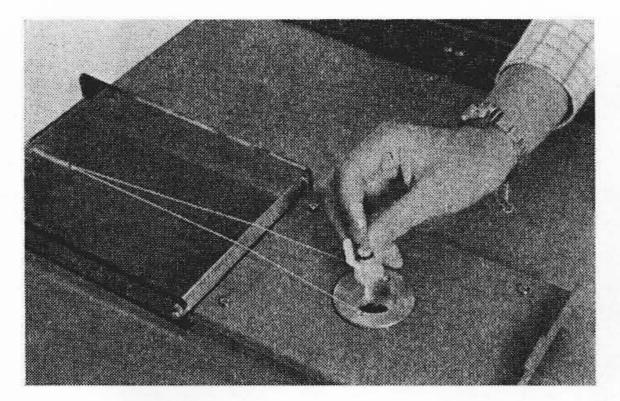


図7 試料導入法

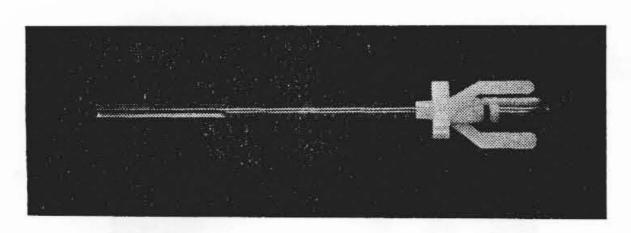


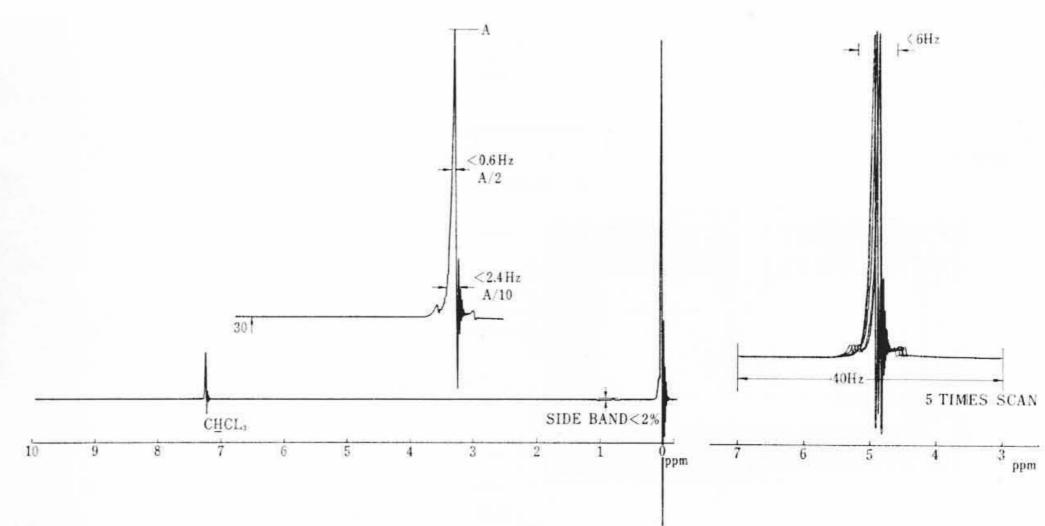
図8 試料管とタービン

ものである。さらに600 Hz を6分割し、それぞれに対応する押しボタンで、任意の100 Hz の区間を拡大して測定することができる。このとき自動的にベースラインがシフトするので、全域スペクトルと拡大スペクトルを重ねることなく記録できる。

使用した記録計は日立製作所製 56 形で、全半導体化され、信頼性高く、ペン応答速度 0.5 秒、スライドワイヤに単線を使い、巻線抵抗に比べて分解能が高い。

4. 操作性の工夫

4.1 自動パラメータ選定


高分解能 NMR スペクトルを測定する条件中、特に化合物の性質、主として T_1 、 T_2 で表現される緩和時間およびその機構によりもっとも適切な RF 照射磁場強度と掃引速度を選ぶことが大切である $^{(2)}$ 。 照射磁場強度 H_1 のレベルは感度の上からは飽和を起こす直前まで大きくして使用することがよい。この趣旨に基づいて、600~Hz の全域掃引と、100~Hz 部分拡大掃引のそれぞれに対し、もっとも適切な H_1 のレベルが自動的に選定されているので、液体試料の通常測定においては、ほぼ最適条件のスペクトルが得られる。

ただし通常測定以外に、特に T_1 , T_2 の条件により飽和の起こりやすい試料、また試料量が少なかったり溶解度が小さなために H_1 レベルを大きくしなければならない場合を考慮して、 H_1 レベルは3段階 (High, Normal, Low) にマニュアルで設定することもできる。HI (High) とともに $GAIN \times 10$ を使用した場合には、雑音も大きくなるので、 $GAIN \times 10$ 回路中にある時定数回路によるフィルタで除く工夫がなされている(図 6 参照)。

4.2 新試料管導入機構

高分解能 NMR 測定では試料管に回転タービンを取り付け,30~60回/秒程度の速さで回転させるため、プローブ内の試料管保持部の内径は、試料管外径よりわずか大きいのみである。そのため、従来試料管の導入、取出しの際、管を破損し、プローブ内部を汚染する事故が、たびたび起こった。この運転保守上の問題を除くため以下の対策を施した。試料導入は、プローブ上部に設けられ、試料導入部のふたと連結されたエレベータ機構により、試料がふたの開閉とともに、プローブ内に自動的に導入されるようにしてある。

このとき、タービンは図8のようなものとし、回転安定化のために3枚翼とし、かつ3枚翼により、リング中に置かれた試料管は3点で支持されるので、中心に位置し、垂直方向がプローブの中心線と合致する。エレベータ機構に使用されたつり糸にはナイロンより

Sample: TMS 20%+CHCL₃ 10%

Remarks: Resolution

図9 分解能横軸更正データ

Sample: TMS 20% Remarks: Reproducibility

図 10 5 回重ねデータ

糸が使用され、長期の使用に耐えるようにしてある。

4.3 自動スケール拡大およびシフト

高分解能 NMR における通常の水素核スペクトルは、ほぼ $10 \, \mathrm{ppm}$ の範囲内に限られている。本装置では、前述のようにこの領域を1回 の押しボタン操作により設定できるようにしてある。部分的に拡大を行なう必要の生じた場合には、更正チャート上の横軸目盛上にある $0-600\,\mathrm{Hz}$ 間の任意の区間に対応する"Scale Exp"のボタンを押すことにより拡大が行なわれる。また $50\,\mathrm{Hz}$ シフトボタンとの組み合わせにより、たとえば $150\sim250\,\mathrm{Hz}$ のような設定もできる。さらに $10\,\mathrm{ppm}$ の外に存在する信号は、 $600\,\mathrm{Hz}$ ($10\,\mathrm{ppm}$) シフトボタンにより通常領域の上、下を $10\,\mathrm{ppm}$ 幅で容易に観測可能である (図 $6\,\mathrm{参照}$)。

4.4 共鳴信号強度読出し機構

操作パネル上にあるメータを使用することにより、信号ピークの 高さを表示することができる。あらかじめ最高ピークの試し書きを 行なう必要がなくなり、ルーチン測定の際の測定時間を短縮するこ とができる。

メータ指示値に"Amplitude"の数値を合わせることにより、スペクトル中の最大ピークが記録紙のフルスケールにほぼ一致する(図6参照)。

5. R-24 の基本性能

以下の 4 枚のデータにより R-24 の基本性能の一部が示される。いずれもルーチン測定用の高分解能 NMR としてじゅうぶんな性能を有している。分解能,横軸更正精度,再現性測定には 20% V/V TMS (Tetra Methyl Silane),10% V/V クロロホルムの四塩化炭素溶液を用い,感度と積分精度試験のために,5% V/V エチルベンゼン四塩化炭素溶液を使用している。

 $0.6~\rm{Hz}$ の分解能があれば、経験的には $0.3\sim0.4~\rm{Hz}$ 程度のピーク分離判別が可能である。 横軸更正精度、および再現性は更正チャートで正確なケミカルシフトを読みとるためにぜひとも必要なものである。たとえば、クロロホルムのピークを TMS を $0~\rm{ppm}$ として測定すると、 $7.25\pm0.05~\rm{ppm}$ となる。また再現性は、TMS ピークを $100~\rm{Hz}$ 幅で $5~\rm{color}$ 回連続して測定したとき、平均誤差が $2~\rm{Hz}$ 以内である。これは通常 $10~\rm{ppm}$ 掃引で 0.3% 程度であり、更正チャートを安心して使用できる(図 9 、 $10~\rm{sm}$)。

感度(S/N)は次のように定義される。

ここでベースラインの実効雑音の大きさはピークからピーク値の

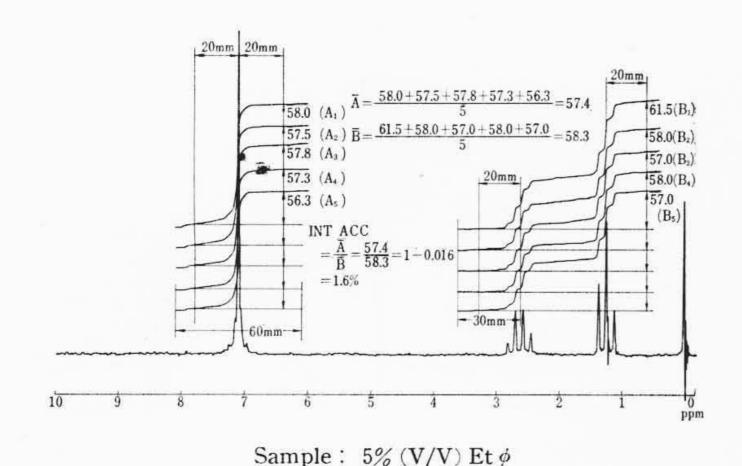
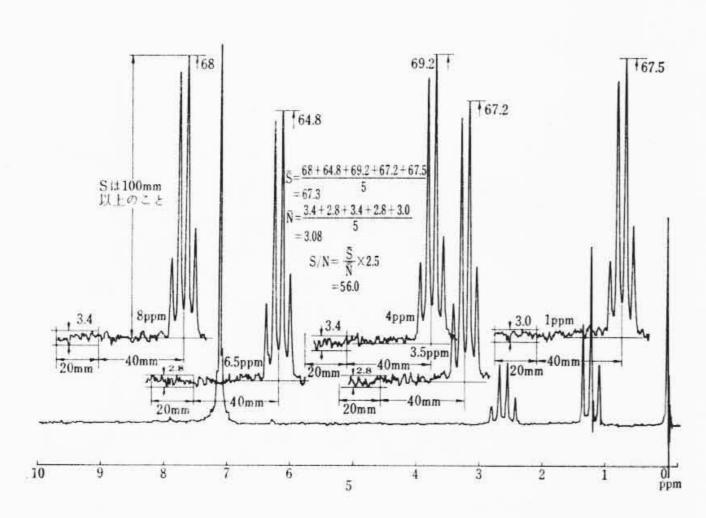



図 11 面積積分精度データ

Remarks: INT. ACC

Sample: 5% (V/V) Et ϕ Remarks: S/N>50

図 12 感度測定データ

1/2.5 となる (図 12 参照)。

核磁気共鳴スペクトルが有機化学などで注目される一つの特徴として、化合物の分子構造に対応して現われる水素核ピークの面積積分値の間に、簡単な整数比が存在し、これが種々の官能基水素核の数に比例することがわかっている。この利点を生かし近年 NMR が研究の場のみでなく、広い分野で、多くの人々に使用されている。積分精度は 5% V/V エチルベンゼンによる測定結果では、2% 程度の精度で面積比が得られる(図 11 参照)。試料濃度が上げられる場合には、さらに高い精度で面積比を求めることが可能である。

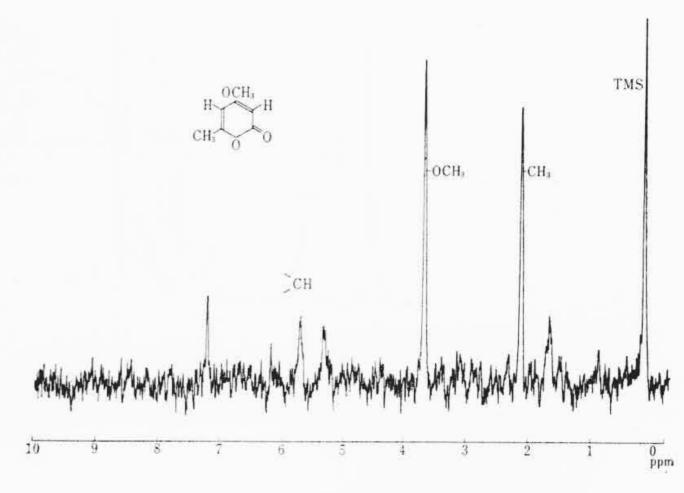
6. R-24 の応用分野

上記のように、ルーチン測定にすぐれた操作性を持つ R-24 は、 以下の例としてあげられた分野以外にも広く利用されうる分析機器 である。

おもな応用分野としては,

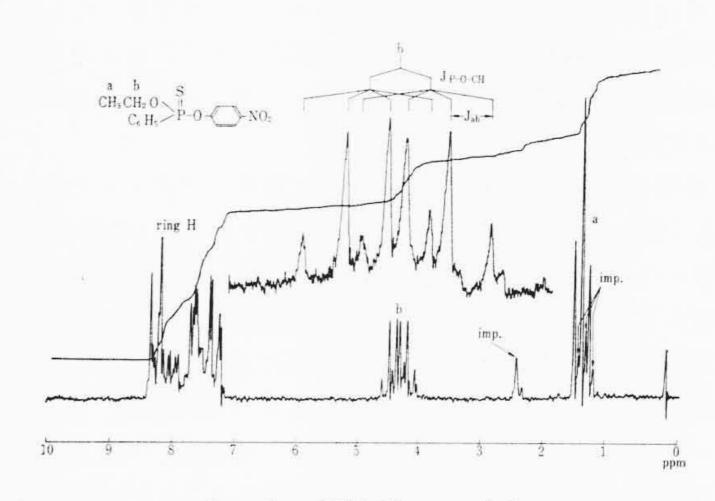
(1) 有機化学における研究一般

天然有機化学,有機合成化学における化合物の構造決定,同定, 定量,混合物の比率決定などへの利用が可能である。

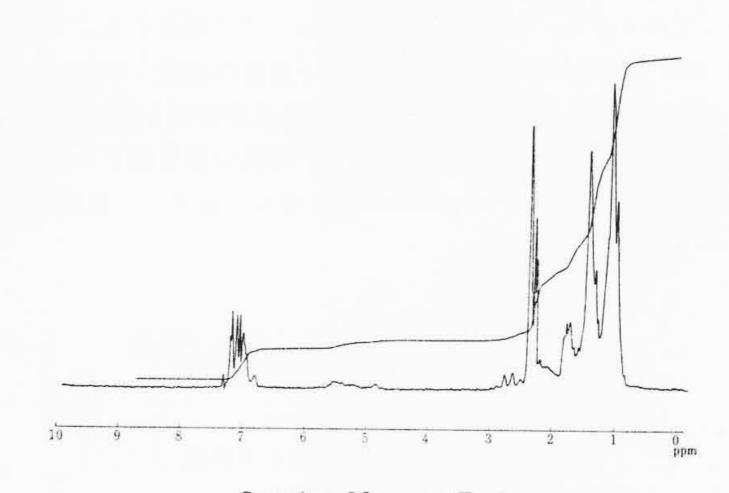

- (2) 化学工業諸部門における応用研究
- (3) 工場の現場における品質管理

特にポリマー材料,ポリマー製品などの品質管理に操作の容易 さから,現場担当者による測定が可能である。

(4) 大学, 工専, 工高などの化学教育


これまで核磁気共鳴法の理論は講義の中で扱われてきているが、さらに多くの人に実習をあわせたカリキュラムの成立を可能にするものである。

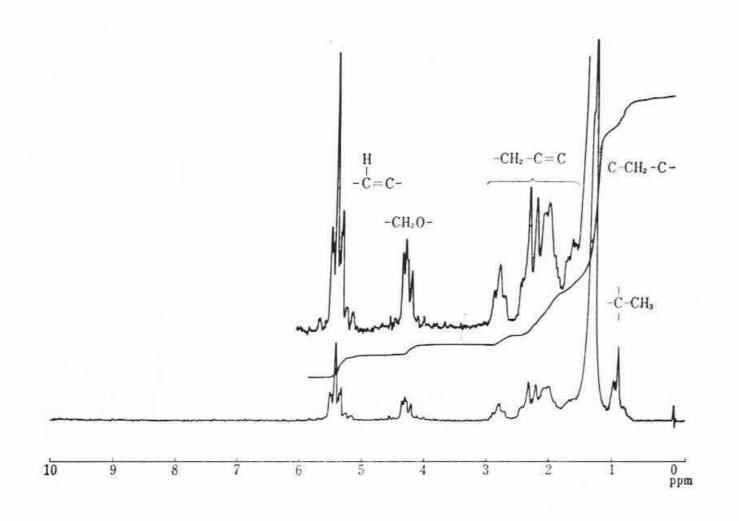
以下にいくつかの応用データスペクトルと、解説を示すことに



Sample : OCH_3 OCH_3 OCH

Remarks: α-Pyrone Devivative 図 13 α-ピロン誘導体

Sample: EPN (Commercial) 図 14 EPN のスペクトル



Sample: Motorcar Fuel 図 15 市販ガソリンのスペクトル

する。

図 13 は α -ピロン誘導体 (分子量 140) の固体試料 1 mg を標準測定溶液量 200 μ l に溶かして得られたスペクトルである。感度の点からみても明らかなように、ピーク帰属もでき、微量試料であっても溶解度を上げれば、良質のスペクトルをうることができる。

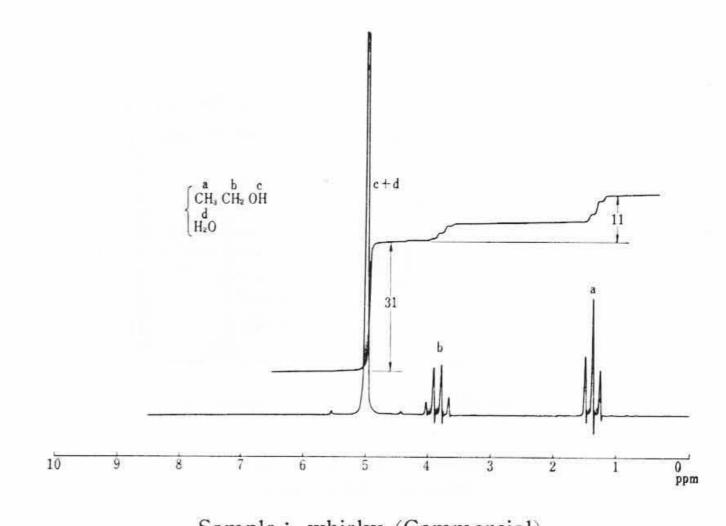
図 14 は最近注目されているパラチオンをはじめとする有機リン系殺虫剤のうち、農薬として大量に使用されている EPN (Ethyl-p-Nitrophenyl Thionobenzene Phosphonate) のスペクトルを示したものである。 化学シフト 4 ppm のメチル基、4.3 ppm のメチレン基、低磁場 $(7.0 \sim 8.5 \text{ ppm})$ ピークはベンゼン環のものと帰属され、積分結果がこれを裏付けている。また帰属不可な共鳴線は積分結果の水素核数が割り切れない数であることからも、不純物である

Sample: Sesameoil Commercial 図 16 市販ごま油のスペクトル

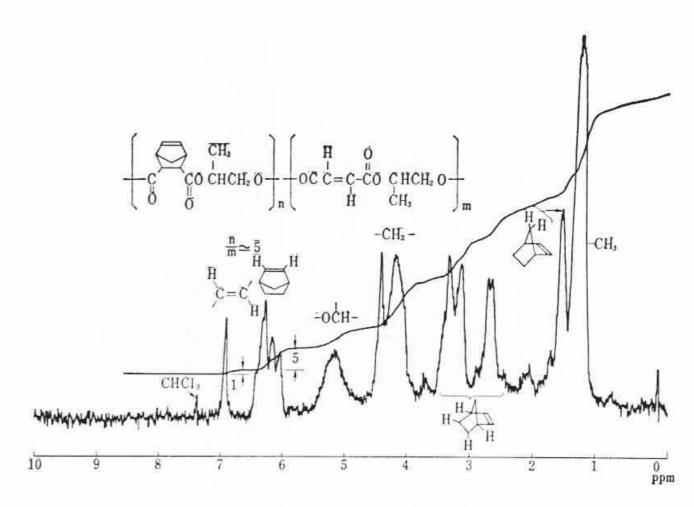
と考えられる。

図15は市販されているガソリンのスペクトルを示したものである。重油より精製後、種々の添加剤が加えられていると考えられるが、油成分中にある芳香族系、オレフィン系、パラフィン系水素の組成比を知ることも可能である。

図 16 は市販食用油の一つであるゴマ油のスペクトルである。油脂はよく知られているように、グリセリンエステル(グリセリド)が主成分となっており、酸成分はおもに $C_4 \sim C_{18}$ の飽和脂肪酸、リノール酸、リノレイン酸などの不飽和脂肪酸とよりなっている。特に不飽和結合は化学的に活性で、油の品質に大きな影響を与える。通常不飽和結合の量はヨウ素価の測定により行なわれる。 NMR スペクトルでは、オレフィン系水素の共鳴が、低磁場(TMS より 5 ppm 以上) に現われるので、積分結果より定量することが比較的容易である。


図17は市販ウイスキーの測定スペクトルである。 aの三重線はエチル基のメチル, bの四重線はメチレン基に相当する。アルコールの-OHと水の-OHとは常温で速い交換の結果1本になっている。このときアルコール1分子中の-OH水素核は1個,水の場合には2個であるので,下記の方法により,-OHの積分値とエチル基の積分値の比較により,アルコールの含有量を定量することができる。

また水とエタノールのモル比は水の水素核数とエタノールのOHの数の比の2:1であることより


モル比=
$$\frac{1}{2}$$
× 水の水素核数
 $=\frac{1}{2}\left(\frac{\text{OH の積分値}}{\text{エチル其の積分値}} \times 5-1\right)$

となり、おのおのの積分値を代入することによりモル比が求められ、 さらに重量比、容量比も求められる。

図 18 は endo-HAC/PGL* 樹脂のスペクトルを示したものである。樹脂の構造中で HAC がどのような構造をとっているかを調べることができる。 6.2 ppm の HAC のオレフィン水素核の共鳴線がABパターンを示すこと、 2.7 ppm にトランス形特有のパターンの

Sample: whisky (Commercial)
図 17 市販ウイスキーの NMR スペクトル

Sample: Endo HAC/Propylenegrycol Polyester resin 図 18 ポリエステル樹脂

あることより樹脂中のHACはトランス形で存在することがわかる。 6.85 ppm には、フマール酸エステルのオレフィン化水素核の信号が 見られることから、HACはポリエステル化反応中に、シクロペン タジエンとフマール酸に分解されたと推察できる。またその量は、 積分結果よりHACの数十%であることもわかる。このほかほとん どのポリエステル樹脂の酸成分、グリコール成分の組成割合を定量 することも可能である。

7. 結 言

本装置の開発,設計に関しては,従来の大形装置を作ってきた経験を生かしたことは言うまでもなく,特に大形装置の有する性能に近づけ,かつ操作性を容易にした装置を製作するにあたり,多くの問題を解決しなければならなかった。また生産性を向上させるため,製造段階での省力化とコスト低下には,設計者をはじめ多くの人のアイデアが生かされ,努力がなされた。

計画の初期より有益な情報を提供された大阪大学産業科学研究所 湯川泰秀教授,種々の点で協力と激励をいただいた東北大学非水研 池上教授,Perkin Elmer 代表 Dr. Smith,計測器事業部製品計画 室中村副技師長に感謝の意を表するとともに,製品化の過程におけ る日立製作所日立研究所第 5.1,5.3 研,日立金属株式会社熊谷工場 磁石グループ,日立製作所那珂工場関係各位のご協力に感謝するも のである。

参 考 文 献

- (1) D. U. Šparac: Z. für Angewandete Math. und phys., 12, No. 1 (1961)
- (2) R.R. Ernst: Advances in Magnetic Resosonance, Vol. 2, Academic Press, (1966)

^{*} HAC ジシクロペンタジェンカルボン酸 (LCOOH)