特集 微細プロセス装置

U.D.C. 621.3.049.774'14.002.56:543.51.063

マイクロ波プラズマ微量元素質量分析装置

Microwave-Induced Plasma Mass Spectrometer for Trace element Analysis

半導体デバイスの高密度化・高集積化に伴い、ウェーハ表面に付着した極微 量の金属不純物が動作不良などを起こすようになったきた^{1),2)}。このため、これ ら不純物の量を10¹⁰atoms/cm²以下に管理することが不可欠になってきている¹⁾。 これに伴い、これら不純物を直接高感度(pg/ml)で分析評価できる技術が必要に なってきた。

この要求にこたえて、世界初のマイクロ波プラズマをイオン源とするMIP-MS (マイクロ波プラズマ質量分析装置)を開発した。N₂ガスのプラズマを用いたこ とにより、従来のArプラズマを用いたICP-MS(誘導結合プラズマ質量分析装置) に比べ, 妨害イオンが大幅に減少し, 極微量の多元素を同時に定量分析するこ とができるようになった。

大石公之助*	Kônosuke Ôishi
岡 本 幸 雄**	Yukio Okamoto
古賀正太佳*	Masataka Koga
山本秀雄*	Hideo Yamamoto

半導体工業でのデバイスの高機能化、高密度化の発展は目 覚ましいものがある。この発展を支える製造プロセスの清浄 化技術とともに、微量不純物の評価技術の向上が必要となっ てきた。特にウェーハ表面に付着した金属元素不純物は、1010 atoms/cm²以下に制御することが必要であると言われている。

これまで、原子吸光法やイオンクロマト法などが用いられ てきたが、感度が低く、長い分析時間を要するなどの問題が あった。最近, 高感度で多元素の同時分析ができるという特 長を持った、Arガスを用いる高周波(通常27 MHz) ICP(誘導 結合プラズマ)をイオン源とするICP-MS(誘導結合プラズマ質 量分析装置)が製品化された。

このICP-MSでは、プラズマの生成ガスとしてArを用いる ため、表1に示すようにArに起因した³⁹Ar⁺, ⁴⁰Ar⁺および ⁸⁰Ar₂+はじめ、⁵²ArC+や⁵⁶ArO+などの多数の分子イオン(妨害 イオン)が発生し、半導体プロセスでの不純物元素(表2参 照), ⁵²Cr+や⁵⁶Fe+などとスペクトル干渉を起こす^{3),4)}。このた め、これらの元素は直接高感度分析することができない。そ こでもし、Arガスに代わってN₂ガスを用いることができれば、 窒素原子Nの質量数(14)はAr(40)よりも小さいことから、分 子イオンが発生してもそれの質量数は50以下となり,前記金 属イオンなどとのスペクトル干渉は大幅に低減できることに なる。

しかし、ICPではN₂ガスを用いると大きな高周波電力が必

ICP-MS(誘導結合プラズマ質量分析装置)における妨害イオ 表丨 K, Ca, Mn, Feなどの重要な元素がArの分子イオンと重なる。 ン

質量数	妨害イオン	分析元素のイオン	
39	³⁸ Ar ¹ H ⁺	³⁹ K(93.08%)	
40	⁴⁰ Ar ⁺	⁴⁰ Ca ⁺ (96.97)	
45	${}^{12}C^{16}O_{2}{}^{1}H^{+}$	⁴⁵ Sc ⁺ (100)	
51	³⁶ Ar ¹⁵ N ⁺ , ³⁶ Ar ¹⁴ N ¹ H ⁺	⁵¹ V ⁺ (99.76)	
52	⁴⁰ Ar ¹² C ⁺ , ³⁶ Ar ¹⁶ O ⁺	⁵² Cr ⁺ (83.76)	
	³⁸ Ar ¹⁴ N ⁺ , ³⁶ Ar ¹⁵ N ¹ H ⁺		
55	⁴⁰ Ar ¹⁴ N ¹ H ⁺ , ⁴⁰ Ar ¹⁵ N ⁺	⁵⁵ Mn ⁺ (100)	
	³⁸ Ar ¹⁷ O ⁺ , ³⁶ Ar ¹⁶ O ¹ H ⁺		
	³⁸ Ar ¹⁶ O ¹ H ⁺ ,		
56	⁴⁰ Ar ¹⁶ O ⁺ , ⁴⁰ Ar ¹⁵ NH ⁺	⁵⁶ Fe(91.66)	
	³⁸ Ar ¹⁸ O ⁺ , ³⁸ Ar ¹⁷ OH ⁺ ,		
58	⁴⁰ Ar ¹⁸ O ⁺ , ⁴⁰ Ar ¹⁷ O ¹ H ⁺	⁵⁸ Ni ⁺ (67.77)	
59	$^{40}Ar^{18}O^{1}H^{+}$	⁵⁹ Co ⁺ (100)	
74	³⁶ Ar ³⁸ Ar ⁺	⁷⁴ Ge ⁺ (36.56)	
75	${}^{36}Ar^{38}Ar^{1}H^{+}$	⁷⁵ As ⁺ (100)	
79	${}^{38}Ar^{40}Ar^{1}H^{+}$	⁷⁹ Br ⁺ (50.54)	
80	⁴⁰ Ar ₂ ⁺	⁸⁰ Se ⁺ (49.82)	

表2 不純物元素とデバイスに与える影響 さらに、アルカリ土 類としてMg, 金属元素としてCo, Cr, Alなどが含まれる。

不純物元素	素子への影響
アルカリ金属(Na, K, Ca)	酸化膜の耐圧不良
重金属(Fe, Cu, Ni, Zn, Mn)	pn接合リーク
Ⅲ族元素(B, AI)	p反転不良
V 族元素(P, As, Se)	n反転不良
放射性元素(U, Th)	ソフトエラー

61

要になり、Arガスに比べ効率よくドーナツ状のプラズマを大

** 東洋大学工学部 工学博士 * 日立製作所 計測器事業部

886 日立評論 VOL.73 No. 9(1991-9)

気圧で安定に生成することができない5)。

このため、マイクロ波(2.45 GHz)電力でN₂ガスを用いた MIP-MS(マイクロ波プラズマ質量分析装置)の研究開発がJ. Carusoらによって進められている³⁾。Carusoらの用いたMIP

図 | P-7000形MIP-MS(マイクロ波プラズマ質量分析装置)の外観 右側は操作用のマイクロコンピュータである。中央は分析試料を導入 する試料室で,左側にQ-MS(四重極質量分析計)が内蔵されている。 はマイクロ波電力が350 Wと低かったため,溶液試料分析の検 出限界は数十ピコグラム毎ミリリットルとICP-MSに比べて幾 分低いにとどまった³⁾。

このたび日立製作所では、世界で初めてマイクロ波電力を 1kW以上供給できるとともに、ドーナツ状のプラズマ形状を 持つ安定なN₂ MIP(N₂ガスのプラズマ)を製品化した⁵⁾。そし てさらに、このMIPをイオン源とした超高感度(pg/ml)で多元 素同時分析のできるMIP-MSを製品化した^{5)~7)}。本稿ではこの 装置の概要と応用データの一例について述べる。

2 P-7000形MIP-MS元素分析装置

2.1 装置の原理と構成

装置の最大の特長はpg/mlレベルの超高感度分析機能にあ る。装置全体の外観を図1に,機能を図2に示す。水溶液の 分析試料は,ネブライザで霧状にされてマイクロ波キャビテ ィに送られる。

プラズマ温度約6,600 KのMIPに導入された霧状の試料は瞬時に蒸発し、溶質の元素がイオン化される。水平方向に伸びた、窒素の発光のため薄い赤色を帯びたMIPを図3に示す。

コンピュータ

62

注:略語説明 Q-MS (四重極質量分析計), H16, H8コンピュータ (制御用コンピュータ), AXコンピュータ (パーソナルコンピュータ), MIP (マイクロ波誘導プラズマ)

図 2 P-7000形MIP-MSの機能図 真空系の立上げ, MIPの点火などの一連のシーケンスは, すべて内蔵のコンピュータを用いて自動化されている。

マイクロ波プラズマ微量元素質量分析装置 887

図3 MIPの外観 | kWの高周波電力を供給している。

のオリフィスから真空系に取り込まれ、イオンレンズ系によ って収束されQ-MS(四重極質量分析計)に入る。Q-MSで希 望する質量数(原子の質量/電荷量:m/Z)のイオンが選択的に

表 3 P-7000形MIP-MSの総合性能 多元素の同時定量分析が可能 である。記憶した検量線を用いて自動的に元素別の濃度を表示する。

No.	項目	性能
I	分析対象	水溶液試料
2	イオン化方式	マイクロ波プラズマ放電
3	イオンレンズ調整	自動設定
4	質量範囲	m/Z:0~250 amu
5	分解能	<i>m/</i> ⊿ <i>m</i> = 2 <i>m</i> (ただし, 50%高さで)
6	感 度	ppt(ただし、一部元素を除く。)
7	走査速度	最高0.1 s/全域走查時
8	分析部真空度	7×10^{-4} Pa { 5×10^{-6} Torr}
9	排気系	全自動・3段差動排気
10	データ処理	CPUによる測定条件と測定データの 一括管理
11	分析モード	 (a) 定性分析(半定量分析) (b) 定量分析:検量線法,標準添加法, 内標準法

これを通過しイオン検知器に入射する。イオン検知器に入射 したイオン信号は、増幅され電気パルス信号としてパルスア ンプに入る。パルスアンプで整形されたイオンのパルス信号 は積算された後、パーソナルコンピュータに送られ各種の演 算結果,分析試料中の元素の濃度値が出力表示される。P-7000形MIP-MS元素分析装置の総合性能を表3に示す。

分析対象は水溶液試料である。有機溶媒試料は数多くの炭 素および炭素を含むイオンのバックグラウンドが生成され, Cr, Fe, Coなどの主要な分析元素とオーバラップするため直 接分析が困難である。プラズマガスおよびネブライザガスと してN₂ガス(流量131/min)を用いる。プラズマ点火は、電離 の容易なArで点火した後、自動的にN₂に移行する。

プラズマの点火およびインピーダンスマッチング,測定終 了後のプラズマの消火など一連のシーケンスはすべて内蔵す るマイクロコンピュータ(以下,マイコンと略す。)によって自 動的に実行される。

2.2 装置の操作

(1) 真空系の立ち上げ

操作部のキーを押すだけで簡単に真空系を立ち上げること ができる。3段差動排気の各部の真空度は真空ゲージによっ 3.1 妨害スペクトルの少ないN₂ガスのMIP て常時監視されており、各部のバルブの開閉などの一連のシ ーケンスが自動制御されている。分析者はマイコンとの対話 従来技術のArガスを用いるICP-MSのバックグラウンドを を通して、装置が測定開始できる状態にあることを知ること 図4に示す⁴⁾。K, Ca, Cr, Mn, Feなどの質量数(m/Z)の位 ができる。 置にArの分子イオンの妨害スペクトルが見られる。Arよりも (2) 分析条件の設定 質量数の小さいN₂ガスを用いるMIP-MSのバックグラウンド 定性分析, 定量分析(検量線法, 標準添加法および内標準 を図5に示す。Arの場合に比べてはるかに妨害スペクトルが 法)の条件設定は、分析メソッドメニューを呼び出して設定す 少なく、K, Ca, Cr, Mnの高感度定量分析が可能である。質

る。一度作成したメソッドは登録(記憶)され、使用したいと きにいつでも簡単に呼び出すことができるので、新たに条件 設定する手間が省ける。分析データの取り込みから分析結果 のレポートまで、キー操作で自動的に実行される。

63

応用例 3

888 日立評論 VOL. 73 No. 9(1991-9)

10

64

図 4 従来法のICP-MSのバックグラウンドスペクトル 試料は純水である。信号強度の高い分子イオンを含む質量数範囲12~19,28~32,39~42 をスキップスキャンした。Arとその分子イオンが多く見られる⁴⁾。

図 5 MIP-MSのバックグラウンドスペクトル イオン検出器の保護のため,信号強度の高い分子イオン¹²C⁺, ¹⁸H₂O⁺, ²⁸N₂⁺, ³⁰NO⁺, ³²O₂⁺など を含む質量数範囲12~19, 28~32をスキップスキャンした。

量数56のFe⁺の位置に弱いバックグラウンドスペクトルが認め られる。これはHorlick⁴⁾が指摘しているように,Nのクラス タイオン⁵⁶N₄⁺と見られる。⁵⁶Fe⁺イオンも含まれる。

3.2 定量分析の容易な高分解能スペクトル

シリコンウェーハの汚染分析評価の対象とされる、Co、Cr、 Cu、Feなどが位置する質量数50~75のMIPマススペクトルを 図6に示す。タスペクトルが完全に分離されており、かつ姉 Uのスペクトルを図7に示す。238U+は弱いα線を放射するた めメモリエラーの要因となる重要な元素である。Pbは同位体 比(%)が²⁰⁴Pb(1.42), ²⁰⁶Pb(24.14), ²⁰⁷Pb(22.08), ²⁰⁸Pb (52.35)の四つの同位体から構成されている。同図の測定スペ クトルから4本のスペクトルの信号強度比が正しく測定され ていることがわかる。

21 任連府で上古伯州の上い投昌伯

	0.4 区版及ての国际住いるい役里脉
害スペクトルがほとんどないので高精度の定量分析が可能で	ppt (10 ⁻¹² g/ml)レベルの極低濃度域での検量線の測定例を
ある。	示す。希土類元素Y(イットリウム)の測定例を図8に示す。10
3.3 高い測定精度	pptの極低濃度域でも直線性のよい検量線が得られる。Yは地
質量数200から240までの高質量数域の重い元素, Pb, Th,	殻存在度が低く(33 ppm),環境からの汚染の低い元素として,

図 6 MIP-MSにおける低質量数域でのスペクトル 妨害イオンが 少なく、高精度の定量分析が可能である。元素の濃度はCr 5 ppb, Fe 3 ppb, Co 4 ppb, Ni 10 ppb, Cu 4 ppb, Ga 15 ppbである。

図 8 イットリウム⁸⁹Y⁺の検量線 各標準試料は,電子工業用の硝酸を0.1%添加して濃度を安定化させた。

図 9 クロム⁵²Cr⁺の検量線 25 ppt以下の低濃度領域でも,直線性 のある検量線が得られる。

図 7 MIP-MSにおける高質量数域でのPb, ThおよびUのスペクトル 濃度は各20 ppbである。質量数(m/Z)200以上で妨害スペクトルがないた め,元素の同定はきめわて容易である。

装置の検出限界の評価によく用いられる。

ブランク溶液の繰り返し測定値の標準偏差の3倍の値に相 当する⁸⁹Y⁺の濃度を検出限界とすると、その値は0.5 pptとな る。

次にシリコンウェーハの汚染の分析評価の対象となる元素 の一つであるCrの検量線を図9に示す。濃度値がゼロpptに対

応する原点の位置の信号強度がやや浮いているのは、試料容 器を含めた測定環境からの汚染と推定される。25 ppt以下の濃 度域でも検量線が直線的に伸びていることから、濃度pptのレ ンジの定量が可能であることがわかる。従来技術のICP-MSで

図10 カリウム³⁹K⁺の検量線 質量数39の位置に妨害スペクトルは 認められないので,検量線の原点の浮き上がりは環境中のK汚染と推定される。 890 日立評論 VOL. 73 No. 9 (1991-9)

図|| カルシウム⁴⁰Ca⁺の検量線 検量線の原点の浮き上がりは,環 境からの汚染とN₂ガスの不純物としての⁴⁰Ar⁺が考えられる。

図12 鉄⁵⁶ F_e^+ の検量線 ${}^{56}N_4^+$ の弱いバックグラウンドスペクトルがあるが、この強度を減算して検量線を作成した。

のCrの定量下限は100 ppt⁸⁾と報告されているが, N₂ガスを用いるMIP-MSの定量下限は一桁(けた)以上低い。カリウム ³⁹K⁺, カルシウム⁴⁰Ca⁺の検量線を図10, 11に示す。ICP-MS

価方法の技術課題と、これに対応すべく開発したN₂ガスを用いるMIP-MS元素分析装置の分析性能を中心に述べた。今後、超高感度の元素分析装置として、半導体分野をはじめ関連す

では、Arの強い妨害スペクトル40Ar+の影響のため、いずれも 測定できない元素である。窒素を用いるMIP-MSでは、妨害 スペクトルがなく容易に測定できる。

鉄⁵⁶Fe⁺の検量線を図12に示す。先の図5に示すように、質量数56の位置に弱いバックグラウンドスペクトルが認められる。これは窒素Nのクラスタイオン⁵⁶N₄+と言われる³⁾。高周波出力、プラズマガス流量のプラズマ生成条件を一定にすれば、⁵⁶N₄+の強度は一定となるので、この値をバックグラウンドとして減算することにより、図12の検量線を作成した。

4 おわりに

半導体プロセスでのシリコンウェーハの汚染元素の分析評

る化学薬品,生化学などの分野で幅広く適用することができる。

参考文献

- 1) 斉木: ULSIプロセスにおけるコンタミネーション計測評価技術, 応用物理, 59, 1038(1990)
- 石割:半導体における化学計測, Semico., World, 117 (1990)
- 3) W. Shen, et al. Appl., Spectrosc., 44, 1003(1990)
- 4) S. H. Tan, et al. Appl., Spectrosc., 40, 445(1986)
- 5) 岡本,外:第51回応用物理講演会,29aMA10(1990)
- 6) Y. Okamoto : Trans · IEE of Japan, 110-A, 759(1990)
- 7) Y. Okamoto : Analytical Sciences, 7, 283(1991)
- 8) 森田,外:第52回分析化学討論会, 2C11(1991)

