エンジンの燃焼改善とその評価技術

Improvement of Engine Combustion and Its Evaluation Technology

大須賀	稔*	Minoru Ôsuga	畄	本	良	雄**	Yoshio	Okamoto
相馬憲	*	Ken'ichi Sôma	Л	部	隆	平***	Ryûhei	Kawabe

燃焼改善のための評価技術

エンジンに燃料を噴射するインジェクタの噴霧の粒径,速度,流量は位相ドップラー法で,噴霧の内部構造は透過光減衰法で計測,解析する。 シミュレーション,2色シートレーザ法などでは、シリンダ内の空気流および燃料の状態を解析する。さらに、燃焼火炎の分光分析により、シ リンダ内の数ミリ秒オーダの高速な燃焼現象を解析する。

自動車エンジンの排出ガス浄化,燃費低減を達成 するには,燃焼状態を計測し,燃料,吸気,点火系 などの性能がエンジン燃焼に与える影響を明らかに し,この結果を基に各系の構成部品を改良する必要 がある。エンジン燃焼を的確に評価するには,燃焼 した結果である出力,燃費,排出ガスを計測するだ けでは不十分で,その原因となる現象(空気流,噴霧 流など)を正確に,かつ定量的に計測することが重要 である。

具体的には,

霧特性を改善する。

(2) シリンダに吸入される空気流の吸入, 圧縮行程 での変化を把握し, これが理想的になるように吸気 系の仕様を決定する。

これら(1), (2)の燃料と吸入空気の相互作用によっ て点火時期でのシリンダ内の混合気状態が決まり, 燃焼の良否が決定される。

日立製作所は,長年培われた燃焼評価技術に加え て,ガスタービンなどの火力発電分野での燃焼計測 技術や,原子力発電分野での気液二層流のシミュレ

(1) 吸気ポート部での噴射燃料,シリンダ内での燃料の状態を把握し,燃料系であるインジェクタの噴

ーション技術を適用し,自動車用エンジン制御機器 の仕様決定および改善に取り組んでいる。

9

* 日立製作所 日立研究所 ** 日立製作所 機械研究所 *** 日立製作所 エネルギー研究所

1 はじめに

エンジンは燃料,吸気,点火系の各要素で構成しており,燃焼はこれらの性能に左右される。このため,燃料, 吸気,点火系を抜本的に改善することが燃費,排出ガス 規制をクリアするためのキーとなる。

各要素の仕様決定,改善にはそれぞれに関連する現象 を正確かつ定量的に把握し,性能との因果関係を明確に することが重要である。最近,レーザ応用計測や分光技 術が,噴霧や燃焼評価などに適用されている。さらに, スーパーコンピュータの普及に伴って数値シミュレーシ ョンも高度化し,その応用範囲が広がっている。ここで は,日立製作所で実施している評価法と,それを用いた 燃焼改善例について述べる。

2 エンジンの燃焼改善

吸気系は、エンジンに吸入される空気量を計測する熱 線式空気流量センサ、空気量を制御するスロットルバル ブが基本的な部品である。近年では燃費低減に有効な、 理論空燃比(空気と燃料の比が14.7)よりも大きいリーン 空燃比で運転するリーンバーン(希薄燃焼)がクローズア ップされている。リーンバーンを実現するには、シリン ダ内にスワール(空気旋回流)を生成し、火炎をシリンダ 内全体に急速に伝ばさせ、燃料が少なく燃えにくいリー ン空燃比での燃焼を安定化する必要がある。このため、 吸気系の一部にスワール生成機構を設けるものもある。 目立製作所のスワール生成機構は、補助通路による指向 性のある空気流で吸気を偏向させ、シリンダ内にスワー ルを生成している。

シリンダ内の燃料に着火する点火系として,点火コイ ルと供給電流を断続するパワースイッチがある。特に, シリンダ内にスワールが形成されている場合,点火プラ グ電極間の放電火花が,強い空気流で吹き消されて着火 不良を生じる可能性がある。これを防止するため,火花 を形成する放電エネルギー(電流,持続時間)を選定して 燃料への確実な着火を実現する必要がある。

エンジンのシステム構成と燃焼改善のねらいを図1に 示す。燃料系の主要部品は、燃料を噴射するインジェク タであり、噴射された燃料噴霧の性状でエンジン性能が 大きく変わる。燃料噴霧の粒径、噴射方向、広がり角が 重要な改善項目であり、これらの最適化によって吸気ポ ート、およびシリンダ壁面への燃料付着を防止すること が燃焼改善につながる。付着燃料は未燃焼分として排出 されるため、これをなくすことで大幅な排出ガス浄化が 達成できる。

系	主要部品	改善のねらい	改善項目
燃料系	インジェクタ	吸気ポート, シリンダ 壁面への燃料付着防止	燃料噴霧粒径 噴射方向 噴霧広がり角
吸気系	スワール生成機構	シリンダ全体への火炎 伝ぱ,伝は速度の増大	吸気偏向方向 吸気流速
点火系	点火コイル パワースイッチ	混合気への確実な着火	放電エネルギー (電流,持続時間)

3 噴霧特性の改善と評価技術

ヘリウム - ネオンレーザ光の干渉じまを利用した位相 ドップラー法による燃料噴霧の粒径,粒子速度および流 量の評価例を図2に示す。ビームスプリッタで2本に分 岐されたレーザ光の交差点が測定点となり,この位置を 噴霧が通過するように配置する。測定点では干渉じまが 形成され,粒子が通過したときの散乱光の強度変化を3 個のホトディテクタで検出し,統計処理することによっ て粒径,粒子速度および流量を求める[同図(a)参照]。こ の装置では測定点がピンポイントとなるが,インジェク タを前後左右に移動することで,噴霧全体の情報を得る ことができる。

2吸気弁エンジン用の2方向噴霧インジェクタの測定 例を図2(b)に示す。測定点を移動し,各格子点での計測 値を三次元化して表示した。噴射燃料を気流で微粒化す る日立製作所の気流微粒化式のインジェクタの例を下段 に示す。噴霧の2方向性を保ちながら,粒径は30 µm程度 と小さくなっている。

図 レ エンジンシステムの構造と燃焼改善のねらい
 エンジンシステムは燃料,吸気および点火系で構成しており,
 各部品の仕様を最適化することによって燃焼改善が図られる。

10

図3に示す別の例では,非定常高濃度噴霧の瞬間影画 像を解析することにより,噴霧内全粒子の平均粒径や噴 霧のペネトレーション,噴霧角などを定量的に評価で きる。

エンジンの燃焼改善とその評価技術 143

(a) 装置の概要

(b) 測定例

図2 燃料噴霧の粒径, 粒子速度, 流量の評価

レーザ光の干渉じまを利用した位相ドップラー法によって各量を測定する。気流微粒化式インジェクタでは,噴霧の2方向性を保ちながら, 粒径は30µmと小さくなる。

この計測では、透過光減衰法の原理を利用しており、

平均粒径推定の散乱波データと同時に噴霧形状についての情報も得られる。

この評価に用いられる光学系は,光源とその光を噴霧 に透過させるためのミラー,およびCCD(Charge-Coupled Device)カメラから成る。CCDカメラ上に得られる 画像は,光が噴霧によって減衰された投影データである。 さらに,光学系に対し噴霧を回転させながら投影データ を採取し,CT(Computed Tomography)の再構成アルゴ リズムを適用することにより,噴霧の分布が計測できる。 噴霧濃度の測定例を図3(b)に示す。高濃度の噴霧が二分 割している様子がわかる。このように,噴霧の指向性の 検討や微粒化向上を図るには,以上のような評価法が有 効である。

4 空気流,燃料挙動の改善と評価技術

4.1 シミュレーションによる評価

4.1.1 シミュレーション手法

点火時期でのシリンダ内ガソリン濃度分布を把握する ため、燃料噴霧から吸気・圧縮行程にわたる燃料と空気 の流動・蒸発挙動を数値シミュレーションする手法を開 発した。

吸気弁の開閉・ピストンの変位などの移動境界を持つ 体系内で、燃料液滴と空気流の相互作用を考慮して、空

気の流速分布、燃料液滴の運動、燃料蒸気の移動が求め ることができ、以下に述べるような特徴がある。 (1) 空気流についてはオイラー座標,液滴についてはラ グランジェ座標で記述する、いわゆるDDM (Discrete

(b) 測定例

11

図3 燃料噴霧構造の評価 透過光減衰法によって噴霧の粒径,ペネトレーションおよび形状 が計測できる。任意断面の情報が得られるので,内部構造が把握で きる。 Droplet Model)法^{*1)}を採用しており、初期粒径、初期速度の異なる多数の液滴を扱うことができる。

(2) FLIC (Fluid in Cell)法*2)を用いて空気の流速分布 を計算し、さらに圧縮性も考慮している。

(3) 空間メッシュ分割に4~6面体を用いることで,吸気管のような複雑な形状も表現できる。

(4) 空気と燃料間の伝熱,燃料表面の飽和蒸気圧,燃料 蒸気に関する物質伝達など,物理モデルに基づいて燃料 の蒸発速度を計算している。

(5) 燃料液滴と空気の相対速度差が大きいときの液滴の 分裂や,液滴が吸気弁に衝突したときの反射も考慮して いる。

4.1.2 シミュレーション例

スワール生成機構のある2,000 r/min, トルク40 N・m のリーンバーン運転状態を想定した噴霧挙動を図4に示 す。液滴の色は粒径を表しており,スワール生成機構か ら出る高速気流で微粒化されている。燃料噴霧は2方向 に分かれて吸気ポートに向かって飛翔(しょう)し,シリ ンダ内に流入する。 このようにこの手法では、シリンダ内のガソリン濃度 分布の過渡変化を評価できるので、燃料噴射弁やスワー ル生成機構の仕様、噴射制御法の検討などを効率的に進 めることができる。

4.2 可視化による評価

4.2.1 燃料挙動

吸気ポート部に噴射された燃料噴霧の挙動を,内視ス コープで撮影した結果を図6に示す。撮影画像の視野を 同図(a)に示す。内視スコープは吸気弁方向に向かって上 流から挿入し,視野内には二つの吸気弁に対応した吸気 ポート,ステム,インジェクタから噴射した燃料噴霧が ある。噴射開始前の画像が同図(b)で,吸気ポートだけが 撮影されている。噴霧角が小さいインジェクタを用いた 場合を同図(c-1),(c-2)に,噴霧角が大きい場合の画像 を同図(d-1),(d-2)に示す。噴霧角が小さい場合は,噴 霧が吸気ポートの壁面に付着することなく,吸気弁の内

シリンダ内の空気流速とガソリン蒸気濃度分布を図5 に示す。スワール生成機構により、シリンダ内に強い縦 スワール(タンブル)が生じている。また液滴から蒸発し たガソリン蒸気が局所的に高濃度部を作り、スワールに 伴って移動していく様子がわかる。

側を目がけて直進している。このような噴霧がシリンダ 内に流入した場合,中心部に燃料が集中し壁面への付着

- ※1) DDM法:個々の液滴の位置・速度・径・温度変化など を表現する常微分方程式を解く手法を言う。
- ※2) FLIC法:メッシュ分割した有限体積内の流体質量・ 運動量・エネルギー量の変化を2段階陽解法で計算す る手法を言う。

図4 噴射燃料の液滴挙動のシミュレーション例 燃料噴射後2.4ミリ秒の液滴位置・粒径を表す。噴霧は、スワー ル生成機構からの空気流によって微粒化されている。

12

図5 シリンダ内の空気流速,ガソリン蒸気濃度分布のシ ミュレーション例 ピストン下死点での状態を表す。縦方向のスワールが生じており,これによってガソリン蒸気が移動しているのがわかる。

(c-2) 噴射開始後:8 ms(噴霧角が小さい場合)

(d-2) 噴射開始後:8 ms (噴霧角が大きい場合)

図6 吸気ポート部での燃料挙動の可視化

インジェクタからの噴射された燃料噴霧を,ストロボ光,内視ス コープで撮影した。噴霧角が小さい場合,噴霧は壁面に付着してい ない。

を防止できる。さらに、シリンダの中心部には点火プラ グが配置されているので、着火性も向上する。一方、噴 霧角が大きい場合は、噴霧が吸気ポート全体に分散して おり壁面にも付着している。この付着燃料の一部は液状 のままシリンダに流入し、完全に燃焼することなく排気 管に排出され、排気を悪化させる。このように噴霧仕様 を選定する場合、吸気ポート部での燃料挙動を把握する ことは非常に重要となる。

4.2.2 空気流動

シリンダ内の空気流動の可視化例を図7に示す。緑と 青に分光したシート状のレーザ光を,AOMによって時 間をずらして,石英製のピストンとシリンダを持つエン ジンに照射する。吸気系から樹脂製のトレーサ粒子を吸 入空気とともに供給し,緑と青のシートレーザの反射光 をCCDカメラで撮影する。時間がずれて撮影される2色 の粒子の位置関係を計測することにより,空気流の方向, 流速が測定できる。シリンダの縦断面の空気流の可視化 例を同図(b)に示す。従来の吸気系の場合は,複数の小さ な渦が形成されている。一方,スワール生成機構を持っ ている場合は,大きな縦スワールが形成されているのが (i) 従来の吸気系

(ii) スワール生成機構がある吸気系

(b) 可視化例

注:略語説明 AOM (Acoustic Optical Modulator;音響光学素子)

図7 シリンダ内空気流動の可視化

吸入空気にトレーサ粒子を混入させ、シートレーザ光を照射し流 れを可視化する。シリンダ内の縦スワールが観察される。

わかる。この大きな縦スワールにより、リーンバーン時 の燃焼が安定化する。

5 燃焼改善と評価技術

5.1 放電火花光の評価

点火プラグの中心電極に石英ファイバを貫通するよう に設けて、シリンダ内の光を外部に導くように工夫した 点火プラグー体型燃焼光検出器による放電時の火花光強 度V₀の測定例を図8に示す。一次電流 I₁が大きいほう が、放電時の二次電流 I₂とV₀も大きく、その持続時間も 長い。つまり、放電によって大きな火炎核が形成されて いることがわかる。このような点火装置を用いると、燃 料への着火性が大幅に向上する。

5.2 燃焼火炎の評価

燃焼火炎を経過時間とともに撮影した結果を図9に示 す。噴霧粒径が大きな場合は,吸気ポート部で液状燃料 が形成され、シリンダに流入し液膜となり、これが燃料 過剰の状態で燃焼するために黄色い拡散火炎となる。 このような燃焼では、排気中に未燃焼の燃料が含まれる ために、排出ガス浄化にとって不利となる。噴霧粒径、

13

図8 放電火花光の評価 中心電極に石英ファイバを 貫通させた点火プラグー体型 燃焼光検出器により,放電時 の火花光強度Voを計測した。 一次電流/iが大きいほど,火 炎核は大きい。

空燃比

大

小

図 9 燃焼火炎による評価

噴霧粒径が大きい場合は,燃料液膜の燃焼によって生じる黄色い 拡散火炎が発生する。微粒化し,気化を促進させると,拡散火炎が なくなり排出ガスは浄化される。

噴霧角を小さくした気流微粒化式の場合は,蒸発が促進 され液膜も形成されないので拡散火炎は存在しない。火 炎光を分光分析してラジカル(CH, C₂)成分を抽出し,こ れを基に火炎空燃比分布を計測した例を図10に示す。点 火後10ミリ秒後の燃焼後期での計測例である。噴霧粒径 が小さい場合は,燃料の気化が促進され,火炎空燃比の過 濃化が防止でき,シリンダ内の燃焼は大幅に改善される。 (a) 気流微粒化式インジェクタ

(b) 従来のインジェクタ

図10 火炎空燃比分布による評価

噴霧粒径が 30 μm程度と小さい気流微粒化式インジェクタ(a)では,燃焼後期の火炎空燃比の過濃化が防止できる。

6 おわりに

ここで述べたエンジン燃焼の評価法は,燃料・吸気・ 点火系の仕様決めなどの製品設計に貢献している。今後, 環境規制の強化とともに,燃料を吸気ポート部に噴射す るものからシリンダ内に直接噴射するシステムへの移行 など,いっそうの性能向上へのニーズが高まってくる。 したがって,シリンダ内の現象をより詳細に高精度で評 価する必要性がますます高まる。日立製作所は,長年培 われた燃焼評価技術を基にして,さらに高度な評価法を 確立し,自動車機器の性能と信頼性の向上に努めていく。

参考文献

14

1) T. Kawasaki, et al. : Analysis of Injected Droplet

ンダ内燃焼計測,および評価法の検討,日本機械学会論文

- Provide and a set of the infected brophet
 Behavior in Gas Flow, Proceeding of the International
 Conference on Multiphase Flows '91-Tukuba, (1991-9)
 2) 大須賀,外:点火プラグ一体形燃焼光検出器によるシリ
- 集(B), 59巻, 567号, p.3663(1993-11) 3) 小野:自動車をめぐる環境問題と規制の動向,自動車技術 会新世代ガソリン機関シンポジウム, No.9402, P47(1994-1)