

Advanced Inspection Technologies for Nuclear Power Plants

小田倉満 Mitsuru Odakura 米谷豊 Yutaka Kometani 小池 正浩 Masahiro Koike 藤間正博 Masahiro Toma 永島良昭 Yoshiaki Nagashima

注:略語説明 CRD (Control Rod Drive), ROV (Remotely Operated Vehicle) 図1 原子炉および原子炉建屋のイメージと高度検査ツール

炉心シュラウドに吸着走行し、超音波探傷試験などを行う壁面吸着型探傷用ROVを(a)に、炉底部のCRDハウジング間を遊泳し、目視点検を行う遊泳型炉底部点検 用ROVを(b)に、三次元超音波検査によるボルトねじ部の立体的表示例を(c)に、および広範囲の配管減肉検査を一度に行うガイド波センサーを(d)にそれぞれ示す。

原子力発電プラントの高経年化に伴い,保全の重要性は より高まっており,機器の重要度に応じた適切な検査技術の 適用が求められている。

日立は、原子力発電所機器の多様な形状や寸法の点検 部位に適用でき、かつ高精度で合理的な検査技術を開発し、 このような要求に応えてきた。高精度の検査技術としては、 可搬性に優れた小型の高機能超音波探傷装置や、き裂形 状の三次元的表示を可能とした超音波探傷装置の開発を、 合理的な点検技術としては、付帯作業の低減に有効な点検 装置と配管減肉の広範囲なスクリーニング検査を迅速に行え るガイド波技術の適用範囲拡大についての開発を進めてき た。また、検査技術の拠点となるNDEセンターを設置し、これ らの最新技術を用いた非破壊検査に対応する検査員の技量 維持や専門技能者の育成を図っている。

1. はじめに

国内の原子力発電所においては運転年数が30年を超える 高経年化プラントが増加し,重要度に応じた適切な検査技術 の適用が求められている。日立は,これに対応し,原子力発 電所機器や配管の多様な形状や寸法の点検部位を対象に, 発生する可能性のあるき裂や減肉などを高精度で合理的に 検査できる技術の開発を進めている(図1参照)。同時に,最 新技術による点検対応のための検査員の技量維持と技術力 の向上に努めている。

ここでは,原子力発電機器の高度検査技術であるフェー ズドアレイ超音波探傷,炉内点検用ROV(水中遠隔操作ロ ボット),ガイド波配管減肉検査などの技術開発および非破壊 検査技術者の育成などについて述べる。

2. フェーズドアレイ超音波探傷

2.1 フェーズドアレイ超音波探傷と信号処理

フェーズドアレイ超音波探傷は、アレイセンサー内部の複数

の圧電素子に位相を制御したパルス電圧を印加することにより,任意の位置にビームを集束する検査方式である。また, 現場での適用性向上のために,小型化と探傷性能向上の両 立,さらには高機能装置への拡張を念頭に,新型フェーズド アレイ超音波探傷装置を開発し,株式会社日立エンジニアリ ング・アンド・サービスにより製品化した(図2参照)。

今回開発したフェーズドアレイ超音波探傷装置には,探傷 画像のS/N (Signal-to-Noise)比と分解能向上を目的として開 発したS-SAFT (Sector-scan Synthetic Aperture Focusing Technique)法による信号処理機能を搭載した。S-SAFT法は, セクタスキャンを行いながら,アレイセンサーを機械走査(もしく は電子走査)することで,複数枚の探傷画像を収録して合成 処理を行う信号処理方法である。平均化によるS/N比の向上 効果が得られるだけでなく,開口合成(SAFT)による分解能 向上の効果も得ることができる(図3参照)。

2.2 三次元フェーズドアレイ超音波探傷システム

検査速度と欠陥検出性の向上を目的に、三次元フェーズ ドアレイ超音波探傷システム「3D Focus-UT」¹¹を開発した (図4参照)。このシステムは、センサーを固定した状態で超音 波ビームを三次元走査することができ、さらに探傷データを三 次元表示することで、探傷領域を一括して評価することが可 能である。三次元フェーズドアレイ超音波探傷システムは、以

注:略語説明 LAN(Local Area Network)

図2 フェーズドアレイ超音波探傷装置 ES3300

株式会社日立エンジニアリング・アンド・サービス製「ES3300」の外観とシステム構成例を示す。

注:略語説明 S-SAFT(Sector-scan Synthetic Aperture Focusing Technique) 図3 S-SAFT法と従来法(セクタスキャン法)の比較例

ドリル横穴を付与した試験体のセクタスキャン法の映像結果を(a)に、S-SAFT法の映像結果を(b)に示す。

図4 3D Focus-UTシステム 三次元超音波探傷装置の外観と超音波ビームの走査イメージを示す。

注:略語説明 CAD(Computer-aided Design)

図5 探傷結果の表示例

平底穴を付与した試験体の探傷結果と立体表示をCADデータに重ねて示す。

下の特徴を有する。

(1) 走査条件設定:3Dレイトレースによる伝播(ぱ)解析

3D-CAD(Computer-aided Design)と連携したレイトレースシ ミュレータで、各素子への超音波伝播時間を解析する。

(2) 探傷データ収録:256素子送受信による高速計測

256素子マトリクスアレイセンサーの全素子に与える遅延時 間を制御することにより、検査対象の内部で点集束ビームを 三次元走査して一括データ収録を行う。

(3) 探傷画像処理:高速ボクセル化による3D表示

開発した専用の高速ボクセル変換・表示ソフトウェアにより, 三次元一括処理が可能である。

ステンレス鋼に複数の平底穴を加工した試験体の探傷結 果を, CADデータと重ねて表示した例を図5に示す。

3. 炉内点検用ROV(水中遠隔操作ロボット)

原子炉の炉内機器の健全性を確認するため、炉内機器の 目視検査、渦流検査、超音波検査を実施することが重要で ある。このため、目視検査用のカメラおよび開発した渦流セン サーや超音波センサーを搭載したROV(Remotely Operated Vehicle)²⁾を開発し、検査時間の短縮と信頼性確保に貢献し ている。

63

3.1 遊泳型炉底部点検用ROV

沸騰水型原子炉の炉底部には, すきま約150 mmの格子 状に制御棒駆動機構のハウジングが林立している(図6参 照)。炉底部点検用ROVは, 炉底部構造物の健全性確認・ 溶接部点検などを行うものである。

開発したROVの外観を図7に示す。このROVは、炉底部 の構造物間を通過できるように、幅120 mmの箱型形状とした。 また、目視点検および移動用にCCD(Charge Coupled Device)カメラと照明用のLED(Light Emitting Diode)を搭載 している。CCDカメラは、水平方向(パン)360度回転と、上下 方向(チルト)±90度の回転が可能である。推進機構は、前後 方向に2基、斜め方向に4基のスラスタを配置して上下・左 右・旋回の各動作を可能にしている。

従来,つり下げ式固定カメラを用いた実プラントの炉底部点 検は1か月程度を要していたが,このROVを適用することで, 1週間程度に短縮することができた。

3.2 壁面吸着型探傷用ROV

炉内構造物の一つであるシュラウドを点検する壁面吸着型 探傷用ROVの適用対象部位,ならびに壁面吸着型探傷用 ROVの外観を図8に示す。このROVは、シュラウド下部にアク セスするため、炉心支持板に開いた直径276 mmの穴を通過

図6 **炉底部のイメージ** 原子炉の炉底部の拡大図における立体的構造イメージを示す。

図7 遊泳型炉底部点検用ROVの外観 原子炉の炉底部点検を行う遊泳型水中ROVの外観を示す。

する必要があり,幅240 mm,高さ110 mmとした。推進機構 として,壁面に吸着するためのスラスタを2基と,吸着後に壁 面上を走行移動するための走行輪を2基搭載している。また, 渦流センサーや超音波センサーを搭載するとともに,センサー をスキャンする機構を有している。

壁面吸着型探傷用ROVの適用により、従来のマスト型点 検装置に比べて点検期間の短縮と付帯作業の削減が可能 となった。

4. ガイド波配管減肉検査

配管の減肉を測定する際,これまでは配管を覆っている保 温材を全面除去する必要があったが,保温材の一部の脱着 のみで,配管の数十メートル範囲の減肉を一括してスクリー ニングできるポータブルガイド波検査システムを開発した(図9 参照)³⁰。このシステムの特徴は,圧電素子を用いたセンサー を直接配管に設置することができ,独自の信号処理によって 検出性を大幅に向上させた点にある。直管はもとより小口径 の曲げ管でも,配管断面積に対して1%の減肉を検出するこ とができる。

また,大口径配管に対しては,センサーから比較的短距離 の範囲の減肉位置を特定する目的で,部分設置型ガイド波 センサーを開発中である(図10参照)。性能確認に用いた試 験体は,口径500 A,厚さ9.5 mm,内面にポリエチレンライニ ングを施工してある配管で,断面積に対する比率で3%の減 肉bを180度の位置に,5%の減肉cを270度の位置に付与し

図8 壁面吸着型探傷用ROVの適用対象と外観 検査対象であるシュラウドと、その点検を行う壁面吸着型ROVの外観を示す。

図9 ポータブルガイド波検査システム ポータブルガイド波検査装置と配管用センサーの外観を示す。

図10 部分設置型ガイド波セン サー 大口径配管などを対象とした,部 分設置型ガイド波センサーの外観を 示す。

てある。部分設置型センサーを用いて周方向60度ピッチで測定した結果を図11に示す。減肉b,減肉cの正面に部分設置型ガイド波センサーを配置したときに反射波の振幅が大きくなっており,近距離においては減肉の周方向位置を特定できる可能性がある。

現在,発電プラントなどでフィールドデータの蓄積を進めて おり,評価方法を確立しつつある。今後,実機へ適用してい く予定である。

5. 非破壊検査技術者の育成および技術開発

原子力分野では,前述のように高度な検査技術の開発が 実施されており,これらの新技術を確実に現場で使いこなす 技術者の育成・確保,ならびに従来技術においては熟練技術 者の技術伝承の重要性が増してきている。

日立はこれらの要請に応え,顧客の多様なニーズに対応 すべく,検査員と設備を集中配置した「NDE(Non Destructive Examination)センター」を拠点に,たゆみない検査 技術の向上をめざし,高度技術を取り入れた検査装置の開 発と検査員の技術力向上に努めている。

6. おわりに

ここでは,原子力発電機器の高度検査技術であるフェー ズドアレイ超音波探傷,炉内点検用ROV(水中遠隔操作ロ ボット),ガイド波配管減肉検査などの技術開発,および非破 壊検査技術者の育成などについて述べた。

現在,原子力を取り巻く環境が大きく変化し,原子力発電 への期待とともに、プラントの安全性,信頼性の確保がますま す重要となってきている。日立は,検査技術の高度化と合理 的かつ高い信頼性の検査を可能とする非破壊検査技術の開 発,検査員の技術力向上に努め,原子力産業の発展に貢 献していく。

参考文献

- 1) 馬場,外:3次元超音波探傷システム「3D Focus-UT」の開発,日本保全学会第5回学術講演会予稿集(2008)
- 高取,外:炉内検査装置の実用化開発と実機適用,平成20年度火力原子 力発電大会論文集(2008)
- 3)小平,外:ガイド波による配管減肉検査システム,日本保全学会第5回学 術講演会予稿集(2008)

図11 部分設置型センサーの測定例 模擬減肉を付与した500 A配管の検査結果を示す。

小田倉 満

執筆者紹介

2003年日立製作所入社,日立GEニュークリア・エナジー株 式会社 日立事業所 原子力品質保証部 所属 現在,原子力発電所の非破壊検査技術の開発に従事

米谷 豊

1990年日立製作所入社,日立GEニュークリア・エナジー株 式会社 日立事業所 原子力設計部 所属 現在,原子力発電所の非破壊検査装置の設計に従事

小池 正浩 1982年日立製作所入社,日立GEニュークリア・エナジー株 式会社 日立事業所 原子力品質保証部 所属

1982年日立製作所入社,電力グループ エネルギー・環境 システム研究所 予防保全プロジェクト 所属 現在,非破壊検査技術とロボットの研究開発に従事 工学博士 日本原子力学会会員,日本物理学会会員

永島 良昭

藤間 正博

1993年日立製作所入社,電力グループ エネルギー・環境 システム研究所 予防保全プロジェクト 所属 現在,超音波検査技術の研究開発に従事 工学博士 日本原子力学会会員