大気圧下で手軽にSEM観察を実現, 食品・植物・生体組織などの観察が可能に

-卓上大気圧顕微鏡 AeroSurf 1500—

大南 祐介 Ominami Yusuke	1
庄子 美南	닅

中平 健治 Nakahira Kenji **吉原 真衣** Yoshihara Mai 久田 明子 Hisada Akiko 佐藤 賢一 Sato Kenichi 中林 誠 Nakabayashi Makoto 伊東 祐博

Ito Sukehiro

大気と真空を分離させ、電子線を透過することが可能な隔 膜を用いることによって、大気圧下で走査電子顕微鏡観察 が可能な卓上大気圧顕微鏡「AeroSurf1500」を開発し た。本AeroSurf1500では隔膜に試料を密着させない ため、固体試料が大気下で観察できるという特徴がある。

Shoji Minami

また,隔膜と試料との間の大気ガスによる電子線散乱の影響を,画像から低減することが可能な電子線散乱補正 (ES-Corrector)アルゴリズムを開発した。この結果, 前処理を行うことなく食品,生体試料などの含水固体試料 を大気圧下で電子顕微鏡観察できるようになった。

1. はじめに

微細形態の評価に用いられる走査電子顕微鏡 (SEM: Scanning Electron Microscope)は、現在、さまざまな分野 の研究や開発に欠くことのできない重要なツールになって いる。一般的なSEMでは、試料が配置される試料室の圧 力は10⁵ Pa (高真空) ~10² Pa (低真空)である。試料室を 真空にする理由は、電子線が気体分子に衝突して散乱され るため、電子線の通過経路に気体がないことが望ましい点 である。一方、生体組織やソフトマテリアルなどの含水試 料のSEMによる高倍率観察が強く望まれている。しかし、 室温での水の飽和蒸気圧は約2.3×10³ Pa (2.3 kPa) 程度で あるため、一般的なSEMでは10² Paの低真空でも水が蒸 発してしまい、含水状態での観察は難しい。これまでに大 気圧でのSEM観察の報告もあるが、観察に制約があった。

このような背景の中,株式会社日立ハイテクノロジーズ は含水試料を大気圧下で手軽に観察可能な卓上型のSEM を開発した。本稿では、この卓上大気圧顕微鏡AeroSurf 1500について紹介する。

2. 背景

これまでに大気圧中での試料のSEM観察を行う方法が いくつか報告されてきた^{1)~3)}。これらの報告の多くが,真 空と大気を分離するために数十ナノメートル程度の非常に 薄い隔膜を用いて,隔膜越しに試料に電子線を照射させる が,その際に隔膜上に直接試料を搭載するものであった [図1(a)参照]。しかし、この方法では固形材料(食品, 植物,生体組織など)の観察が難しいという問題があった。

そこで、日立ハイテクノロジーズは、試料をステージ上 に設置し、隔膜と試料とが非接触で観察可能な大気圧 SEM観察法を考案した[同図(b)参照]⁴⁾。この方法では、 固体材料でも観察が容易になる利点があるものの、隔膜と 試料との距離が離れているため、大気中の気体分子によっ て電子線が散乱され、SEM像は観察できないと思われて きた。しかし、電子線散乱の原理に立ち戻って検討した結 果、隔膜と試料がある程度離れていてもSEM像は観察可 能であることを見いだした。さらに、SEM画像への散乱 電子線の影響を取り除いて鮮明なSEM像を得る画質改善 技術として、電子線散乱補正技術[ES(Electron Scattering)-

図1 大気圧SEM観察方式

(a)に示す隔膜-試料接触型では,固形材料の観察が難しい。(b)に示す隔膜-試料非接触型では,固体材料でも観察が容易であるが,隔膜と試料の間の気 体分子によって電子線が散乱される。 Corrector]を開発した。

以下に,開発した大気圧SEMの構成と特徴,および大 気圧でのSEM観察を可能とした技術を説明する。

3. 開発装置および技術

3.1 装置のコンセプトと技術的な課題

大気圧SEMの開発にあたり、われわれは食品、農業、 製薬、医学などのさまざまな分野で身近にあるものを大気 圧下で手軽に観察できることをめざした。

日立ハイテクノロジーズは、卓上型のSEMとして2010 年から卓上顕微鏡Miniscopeを世界中で製品販売してい る。Miniscopeは机の上に設置できるため、研究開発や産 業用途だけでなく、子どもの科学教育などさまざまな分野 で幅広く使われている。そこで、大気圧SEMにおいても、 身近にある物が簡単に観察できる顕微鏡となることを願 い、最新型のMiniscope TM3030をベースに開発を進め、 卓上型大気圧顕微鏡 (AeroSurf 1500)の製品化に至った (図2参照)。

3.2 装置の構成

AeroSurf 1500の内部構成を図3に示す。AeroSurf 1500

図2 AeroSurf 1500の装置外観 2015年9月に発売したAeroSurf 1500の外観を示す。

では,真空空間の内部に大気圧を維持可能な空間である大 気圧チャンバを備えている[同図(a)参照]。試料は大気 圧チャンバ内に設置される。大気圧チャンバの内部上側に は真空と大気とを分離する隔膜を備え,SEM内部を真空 に維持したまま,試料空間を大気圧状態(1気圧:約101 kPa)にすることができる。

大気と真空との分離にはシリコンナイトライド (SiN_x)の隔膜 (厚さ20 nm)を採用している。この隔膜の厚みは,後で述べる電子線散乱などを考慮して決定している。

電子線の加速電圧は15 kVである。電子線は、図中の SEM部で電子銃から放出され、対物レンズによって試料 上の焦点位置に集束するように制御される。そして、隔膜 を通過後、大気中の気体分子によって散乱されたのち、試 料に約15 kVのエネルギーをもって到達する。試料からの 反射電子は高エネルギーを持つため、大気部および隔膜を 再度通過して反射電子検出器に到達できる。この構成によ り、大気圧でSEM観察が可能となる。

試料搭載の際は,試料台に試料を設置し,その後試料ス テージをチャンバ側に入れるだけで隔膜直下に試料を配置 することができる[同図(b)参照]。この装置は,付属の 真空ポンプで試料雰囲気を負圧状態[数キロパスカル~ 101 kPa(およそ0.1~1気圧)]にできる[同図(c)参照]。 さらに,隔膜を取り外した状態にすることによって,低真 空状態(数パスカル~数十パスカル)で真空SEM観察を行 うことができる[同図(d)参照]。

3.3 電子線散乱現象

われわれが開発した大気圧SEMでは、隔膜と試料との 距離が離れているため、必然的に大気中の気体によって電 子線が散乱される。この現象のために、SEM像の観察は 困難であると思われており、これまで報告されてきた大気 圧SEMのほとんどは図1(a)の方式を採っていた。しかし、

図3 AeroSurf 1500内部構成図

(a) に大気圧SEM観察(圧力101 kPa)時の様子を,(b) に試料交換位置を,(c) に負圧SEM観察(数キロパスカル〜101 kPa)時の様子を,(d) に真空SEM観察(低 真空:数パスカル〜数十パスカル)時の様子をそれぞれ示す。AeroSurf 1500は1台の装置で大気圧・負圧・真空でのSEM観察が可能である。図示していないが, SEM部では電子線が電子銃から放出され,対物レンズによって試料上にフォーカスされる。 われわれは電子線散乱の原理に立ち戻って検討した結果, 隔膜と試料との距離がある程度遠くてもSEM像は観察可 能であることを見いだした。以下でこの理由について説明 する。

電子線は大気中を通過するときに、気体分子によって散 乱される。しかし、大気中の気体に衝突せずに散乱されな い電子が、確率的にある割合で存在する。散乱された電子 を散乱電子、散乱されなかった電子を無散乱電子と呼ぶ。 全電子中に占める無散乱電子の割合Pは、以下の式で表さ れる⁴⁾。

$$P = exp\left(-\frac{N\rho\sigma}{A}x\right) \tag{1}$$

ここで、N:気体分子数、 ρ :質量密度 g/cm^3 、 σ :散乱 断面積 cm^2 、A:質量数、x:電子飛来距離cmである。

加速電圧15 kVの隔膜(SiN_x,厚さ20 nm)を通過した 後に、電子線が隔膜—試料間距離xを飛来したときの無散 乱電子割合Pの関係を図4(a)に示す。100 kPaが大気圧 であり、その他の圧力に関しても参考に記載してある。こ こで重要な点としては、隔膜—試料間の距離xを大きくし ても、Pは0にはならないことである。つまり、散乱され た電子は対物レンズで制御されるフォーカス位置とは全く 異なる位置に到達するが、散乱されなかった電子はフォー カス位置に到達し、この無散乱電子が割合Pで存在するこ とを示している。

加速電圧15 kVの電子線が隔膜(SiN_x,厚さ20 nm)を 通過した後に、電子線が隔膜—試料間距離100 µm 飛来し たときに試料に到達する電子線のビームプロファイルを、 モンテカルロシミュレーションによって計算した結果を同 図(b)に示す。図から分かるように、100 µmの大気成分 を通過した後でも、散乱電子による幅広いすそ野を持つフ レア成分と、無散乱電子による鋭いピークを持つビームプ ロファイルになることが分かる。すなわち、大気圧SEM

図4 | 隔膜─試料間距離と無散乱電子割合との関係,ビームプロファ イルのシミュレーション結果

隔膜―試料間距離と無散乱電子割合との関係を(a)に、ビームプロファイル のシミュレーション結果を(b)にそれぞれ示す。大気圧(100 kPa)でも散乱 されずに試料に到達する電子が存在するため、中心ピークを必ず持つビーム プロファイルとなる。 で試料に到達するビームプロファイルは、散乱された成分 (ビームフレア)と、散乱されなかった成分(中心ビーム) の和で表されると考えることができる。

Si上の金属パターンを真空SEM像と大気圧SEM像で比較した結果を図5に示す。同図(a),(b)は10 Paの真空中で観察した試料の真空SEM像,同図(c)は同図(a)と同じ位置で隔膜—試料間距離が100 µmの大気圧SEM像である。一見すると,同図(c)の画像は「大気によって電子線が散乱を受けるため画像がぼやけている」ように見える。しかし,同図(c)の倍率を上げて同図(b)と同じ位置で明るさとコントラストだけを変化させてみると,金属パターンの微細構造がしっかりと識別できる[同図(d)参照]。もし電子線が散乱されて画像がぼやけているのであれば,このような微細構造は観察できないはずである。つまり,上述の「大気によって電子線が散乱を受けるため画像がぼやけている」との解釈は正しくないと言える。

大気中で散乱の影響があるにもかかわらず微細構造が観 察できる理由は、次のように考えられる。大気中の気体に よって散乱されなかった無散乱電子線は焦点位置に集束さ れる。無散乱電子による中心ビームのビーム径は、大気中 であっても真空中であっても変わらない。このため、無散 乱電子線は真空SEMと同様の微細構造の画像形成に寄与 する。一方、散乱された電子線はさまざまな場所に飛来し て画像コントラストを悪くする原因にはなっているが、微 細構造の画像形成には寄与しておらず、画像をぼやけさせ ることはない。そのため、中心ビームが十分存在するので あれば、大気圧SEM像では隔膜と試料との間に距離が あっても微細構造の観察が可能であると言える。

図5 | Si上の金属パターンにおける真空SEM像と大気圧SEM像の比較 金属パターンの真空SEM像のx5 k倍を (a) に, x30 k倍を (b) に, 大気圧SEM 像のx5 k倍を (c) に, x30 k倍を (d) にそれぞれ示す。大気圧でも真空と同様 に, 高倍率で金属パターンの微細構造がしっかりと識別できる。

図6 Si基板上の銅パターンの文字

Si基板上の銅パターンの文字「9」の大気圧SEM像を (a) に, 画質改善アルゴ リズムES-Correctorを適用した大気圧SEM像を (b) に, 真空SEM像を (c) に 示す。白矢印部の異物は画質改善した後に識別ができるようになる。

3.4 画質改善技術

本節では、SEM画像への散乱電子線の影響を取り除く 画質改善技術について述べる。

Si上に形成した文字「9」という金属膜を大気圧下で取 得した画像を図6(a)に示す。一見すると画像がぼやけて いるように見えるが、文字「9」の輪郭がはっきり見える。 これは散乱されなかった電子によるものである。一方で、 その周りが明るく画像全体をぼやけているように見せてい るのは散乱された電子によると考察できる。

このように考えると、隔膜と試料間で発生する電子線散 乱は厄介なように見えて、実は電子線を常に同じように安 定的に散乱させることが可能な「場」、すなわち電子線散 乱場 [ES (Electron Scattering) -Field] として捉えることが できると考えた (数学的には、この「場」は一つの伝達関 数として表現できる)。このES-Field で受けた影響を取得 画像上から取り除くことができれば大幅な画質改善が行え ると考え、これが可能な電子線散乱補正 (ES-Corrector) アルゴリズムを開発した⁶。この画質改善アルゴリズムを 適用した結果を同図(b)に示す。同一部位を真空で取得 した画像を同図(c)に示す。同図(b)および同図(c)では, 金属膜表面のサブマイクロメートルの微細構造が観察さ れ,また図中白矢印で示したところに異物が観察される が,同図(a)ではほとんど観察することができない。この 結果から,同図(b)が非常によく画質改善していること が分かる。

また、大気圧下で観察したさまざまな試料の画質改善を 行った結果を図7に示す。ES-Correctorでの補正前の大気 圧SEM像を同図(a),(b),(c)に、補正後の大気圧SEM 像を同図(d),(e),(f)に示す。電子線散乱による画像へ の影響がなくなったと同時にコントラストが改善された結 果、画質が向上した様子がよく分かる。

4. 観察事例

前章までに述べてきたように、隔膜と試料とが非接触な 場合に、隔膜-試料間距離がある程度離れていても大気圧 下に配置された試料のSEM観察が可能であることが示さ れた。この方式では、試料を試料ステージに設置すること で、食品、植物、生体組織などの固体材料でも観察が容易 になる利点がある。以下に、固体材料を観察した事例を紹 介する。

(1) 食品の観察事例

AeroSurf 1500では隔膜を外すと図3(a)から同図(d) の状態になり、大気圧下で観察した試料を真空下でSEM 観察することができる。大気圧と真空で同一位置を観察し た乾燥パスタの表面像を図8に示す。同図(a)ではパスタ のでんぷん粒が見られるが、真空下では同図(b)で示す ように同図(a)では観察されなかったひびが多数発生して

図7 大気圧下で観察した試料の画質改善結果

銅メッシュを (a) に,カイワレ大根葉を (b) に,金コロイドで免疫染色されたラット赤血球を (c) にそれぞれ示す。加速電圧15 kV,室温,1気圧下で観察した 結果を示す。

図8 乾燥パスタの観察結果

乾燥パスタの大気圧下で取得した表面像を(a)に,真空下で取得した表面像を(b)にそれぞれ示す。乾燥試料でも真空下ではひびが入るため,僅かでも水分を含む試料は大気圧下での観察が望ましい。

いることが確認できた。あらかじめ乾燥している試料でさ えも真空下ではひびが入ってしまうことを示している。水 分を含む可能性がある試料は大気圧下で観察することが望 ましいと言える。

(2) 化粧品の乾燥過程観察

紫外線の皮膚照射を防止するためのサンスクリーンを観察した事例を図9に示す。サンスクリーンは、液剤中にシリカやチタンなどの微粒子が混在している。サンスクリーンを基材の上に塗布し、乾燥していく過程を大気圧下で観察している。塗布後30秒後に多量に存在していた水分などの液剤は、5分後には大部分が蒸発し、15分後にはほぼ

乾燥して、微粒子が多数析出して基材に固着した様子が確 認できる。液剤の基材上での挙動観察は従来の真空SEM では実現できなかった。また、化粧品や薬剤などを観察す る場合、液体試料だけでなく基材(皮膚など)も乾燥させ てはならないことがある。このような場合、大気圧下での SEM観察が必須となる。

(3) 生体組織の観察

動物生体組織を観察した事例を紹介する⁵⁾。ホルマリン 固定したラット消化器系から大腸部をメスで切断し[図10 (a),(b)参照],大腸断面を実体顕微鏡(光学顕微鏡)で観 察した[同図(c)参照]。実体顕微鏡観察後,染色や蒸着 などの前処理は一切行わず,AeroSurf 1500で同一断面を 観察した[同図(d)参照]。実体顕微鏡では観察できなかっ た微細な構造がAeroSurf 1500では明瞭に観察できている。 続いて,SEM観察した試料を,生体組織観察での薄切化 の定法である脱水処理,パラフィン包埋,切片処理,脱パ ラフィン処理,HE(Hematoxylin - Eosin:ヘマトキシリン・ エオジン)染色を実施して生物顕微鏡で観察した結果を同 図(e)に示す。絨(じゅう)毛などが明瞭に観察され,大 気圧SEM観察において試料が乾燥せずに組織状態が保存 されたことが示される。

実体顕微鏡で微細な構造が観察できなかった理由は、光

図9 化粧品の乾燥過程の観察結果

塗布後30秒で,液体状態のサンスクリーンが徐々に乾燥していき,化粧品中の微粒子が析出していく様子が観察できる。15分後に乾燥が終了し,微粒子が基材 に固着した様子が観察できた。

図10 ラット大腸部の観察結果

摘出したラット消化器系を(a)に,大腸断面を(b)に,実体顕微鏡観察像を(c)に,大気圧SEM像を(d)に,観察後にパラフィン包埋し切片にした後HE(Hematoxylin - Eosin)染色した生物顕微鏡観察像を(e)にそれぞれ示す。大気圧SEMでは,生体組織表面の微細構造の情報が前処理することなく得られる。

は試料を透過する能力が高いために、表面構造だけでなく 内部構造の像が重なってしまうためである。そのため微細 構造を可視化するには、同図(e)のように薄切化して染色 して観察することが一般的である。しかし、包埋や薄切化 などは非常に手間のかかる処理である。大気圧SEMでは、 電子線はその特性上、試料を透過することはできず、表面 からの反射電子が検出される。すなわち、光と比べて表面 に敏感な観察手法であると言える。このため、光を使った 実体顕微鏡では観察できない微細な構造が大気圧SEM[同 図(d)参照]では観察できたと思われる。生体組織を樹脂 包埋や薄切化する前に、大気圧SEM観察によって微細構 造の情報を得て適切な検体をスクリーニングすることは、 生体組織検体を観察するうえで非常に有用な手順となる可 能性がある。

5. おわりに

隔膜と試料とが非接触の場合に、電子線が通過する領域 に大気中の気体分子があっても無散乱電子によってSEM 像形成が可能であることが分かった。さらに、大気圧 SEM画像から電子線散乱の影響を取り除くことが可能な 電子線散乱補正アルゴリズム(ES-Corrector)を開発し、 大気圧SEM像を大幅に画質改善できることを示した。こ れまで真空下でしか観察できなかった試料が大気圧下で観 察できるようになったことで、前処理を行うことなく含水 固体試料をSEM観察できるようになった。

今後,これまであまりSEMが使われてこなかった食品, 美容,製薬,医学などの分野に新しい貢献ができると期待 される。

謝辞

新潟大学大学院医歯学総合研究科 牛木教授には大気圧 下でのSEM観察技術や試料提供など多くのアドバイスを 頂いた。御礼を申し上げる。

参考文献

- 1) S. Thiberge, et al.: An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy, Rev. Sci. Instrum, 75, 2280-2289 (2004)
- T. Ogura: A high contrast method of unstained biological samples under a thin carbon film by scanning electron microscopy, Biochem Biophys Res Commun, 377, 79-84 (2008)
- M. Suga, et al.: The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas, Ultramicroscopy, 111, 1650-1658 (2011)
- Y. Ominami, et al.: A novel approach to scanning electron microscopy at ambient atmospheric pressure, Microscopy, 64, 97-104 (2015)
- 5) A. Hisada, et al.: Microsc. Microanal, 21, 923-944 (2015)
- Y. Ominami, et al.: A novel approach for scanning electron microscopic observation in atmospheric pressure, Proc SPIE, 9236, 923604-1 (2014)

執筆者紹介

大南 祐介 株式会社日立ハイテクノロジーズ 科学・医用システム事業統括本部 科学システム製品本部 電子顕微鏡第二設計部 所属 現在,電子顕微鏡システムの開発に従事 工学博士

日本顕微鏡学会会員,日本真空学会所属

中平 健治 日立製作所 研究開発グループ 生産イノベーションセンタ

工学博士

検査・計測研究部 所属

IEEE会員, 電子情報通信学会会員

電子顕微鏡第二設計部 所属

久田明子 日立製作所研究開発グループヘルスケアイノベーションセンタ バイオシステム研究部所属 現在,電子顕微鏡を用いた生物試料観察技法の開発に従事 技術士(生物工学) 日本分子生物学会会員

科学・医用システム事業統括本部 科学システム製品本部

現在、大気圧SEMの機構系の設計開発に従事

現在、検査画像向け画像処理・信号処理技術の開発に従事

中林 誠 株式会社日立ハイテクノロジーズ

庄子 美南 日立製作所 研究開発グループ ヘルスケアイノベーションセンタ バイオシステム研究部 所属 現在,日立ハイテクノロジーズにて,大気圧SEMの真空一大気分離 技術の開発に従事 応用物理学会会員

吉原 真衣 株式会社日 科学・医日

株式会社日立ハイテクノロジーズ 科学・医用システム事業統括本部 科学システム製品本部 電子顕微鏡第二設計部 所属 現在,大気圧SEMのバイオ形態観察技術の開発に従事 日本植物形態学会会員

佐藤 賢一

株式会社日立ハイテクノロジーズ 科学・医用システム事業統括本部 科学システム営業本部 マーケティング部 所属 現在,電子顕微鏡関連装置のマーケティングに従事

伊東 祐博

株式会社日立ハイテクノロジーズ 科学・医用システム事業統括本部 科学システム製品本部 所属 現在,科学システム装置全般の統括業務に従事 日本顕微鏡学会会員