U.D.C. 621.315.555.027.8:[669.71]:620.172

超高圧送電用 610 mm², 590 mm² ACSR (鋼心アルミ 撚線)の鋼線およびアルミ線の伸び ^{岩田寿郎*}山本三郎** 岡 光美***

Steel and Aluminium Wire Elongation in 610 mm² and 590 mm² ACSR

By Toshirō Iwata, Saburō Yamamoto and Komi Oka Hitachi Electric Wire Works, Hitachi, Ltd.

Abstract

Hitherto, various calculations concerning the ACSR (short for Aluminum Conductor, Steel Reinforced, for Extra High Voltage Transmission Use,) have been made on the assumption that the stress ratio for aluminum and steel wire composing the ACSR is constant so long as the wire structure remains the same. However, since aluminum and steel wires have different expansion coefficients it is natural that the stress ratio between them differs as the surrounding temperature varies.

In this report, the writers disclose the results of their measurements of elon-

gation of aluminum and steel wires of 610 mm^2 and 590 mm^2 ACSR which they performed with the aid of strain gauge at normal temperature, for the purpose of furnishing basic data for the study of the stress variation ratio of aluminum and steel of the ACSR at various temperatures. The results may be summarized as follows:

- (1) The strain gauge, when disassembled into single wire and used attached to the wire to be measured, provided the same accuracy as the integrate one.
- (2) By means of the strain gauge, simultaneous measurement of elongation was made feasible for steel wire (inner layer) and aluminum wire(outer layer) of the ACSR.
- (3) The measured value of elongation of aluminum wire of 610 mm² ACSR agreed with the calculated value.
- (4) The nominal modulus elasticity has turned out larger by measurement than by calculation, presumably because of strand effect.

〔I〕緒 言

超高圧送電†の発達にともない送電線としてはほとん どすべて ACSR (鋼心アルミ撚線)が使用されている。 これは ACSR が機械的,電気的特性がすぐれており, さらに重量が軽く,外径が大きい利点があるため,長径 * ** *** 日立製作所日立電線工場 間の架線に適し,鉄塔数および鉄塔費の減少,コロナ損 および誘導障害の軽減など,ほかの電線に比べ経済的に 優位にあるためである。

我国においても関西電力,丸山幹線(275kV)には 610 mm² ACSR が使用されるに至つたがその構造にお いてなお検討の余地があるようである。すなわちACSR

† 超高圧とは普通 220 kV 以上の電圧をいつている。

別冊第7号

第 1 表 610 mm², 590 mm² ACSR の諸元表 Table 1. Construction Data of 610 mm² and 590 mm² ACSR

-95		ACSR	の種類
項	Ħ	610 mm ² 590 mm	
公 称 断 面	積 (mm ²)	610	590
然 線 構 M	党 アルミ	54/3.8	30/5.0
茶線数 / 茶線径 (mm ²)	錮	7/3.8	19/3.0
計算断面種	責アルミ	612.4	589.0
(mm)	鋼	79.38	134.3
引 張 荷	重 (kg)	18.350 以上	24,250 以上
外	モアルミ	34.2	35.0
(mm)	鋼	11.2	15.0
重	量(kg/km)	2, 320	2,688
電 気 抵	抗(2/km)	0.0474	0.0493
抵抗相当硬銅撚線路	新面積(mm ²)	385	370
1	条 (m)	1,200	1,000

はアルミ線と鋼線の膨脹係数が異なるため ACSR に荷 重がかかつた場合,温度変化によりアルミと鋼との荷重 分担比は当然変化するものと考えられる。しかし従来 ACSRの各種の計算には常に荷重分担比はその構成によ り一定という条件のもとに行つて来ている。最近,この 荷重分担比が常に一定という条件ははなはだ危険である という考え方が強くなつて来た。現在特に第1表に示す ような 610 mm² と 590 mm² ACSR との構成の是非が 問題になつている。

第1図 標準歪線および単線歪線の荷重と伸びの 関係

Fig.1. Relation between Load and Elongation for Standard Strain Gauge and Straighten Strain Gauge

ACSRに張力がかかつた場合の荷重と伸びについては 二三の研究⁽¹⁾⁽²⁾があるが,温度変化による荷重分担比の 移動に関する研究は報告されていない。

本報告は電源開発会社との協同により温度変化による 素線の交互伸びの研究を取り上げ,その第1段階として 610 mm²,590 mm² ACSR のアルミ線および鋼線の伸 びを抵抗線歪計⁽³⁾を用いて常温において同時に測定を行 つたのでその結果について報告する。

[II] 予備 実 験

(1) 単線 歪線の修正係数

伸びの測定には標準型歪線を真直にしたものを使用す ることにしたのでこの単線歪線の補正用修正係数を求め た。このため単線歪線と標準歪線とを平鋼に貼り20tア ムスラー型万能試験機を使用して荷重と伸びの関係を測 定した結果は第1図に示す通りである。第1図より標準 歪線と単線歪線の伸びの関係を求めると第2図のように

なり、これより修正係数を求めると、0.84となる。

なお本実験値の精度を確めるため計算より伸びを求め れば,

$$\varepsilon = \frac{P}{AE}.....(1)$$

- 第3図 240 mm² ACSR のアルミ外層の荷重と
 伸びの関係 (1)
 (摩擦チャックを用いた場合)
- Fig.3. Relation between Load and Elongation for Aluminum Component Wire of 240 mm² ACSR

(2) 試料および実験方法

(i) 第1回試験としての試料は 240 mm² ACSR,
 長さ約1mのものを選び,両端の固定方法は鋼心のみ合
 金端子付とし,アルミ線は摩擦によるチャック止めとした。

本試料を 20t アムスラー型万能試験機に取付け,単 線歪線を ACSR の外層アルミ素線の峯に貼りつけた。 試験方法は引張荷重 5t をかけたま、1.5h おき荷重を 下げながら読み取つた。

つぎに 6t, さらに 8t 荷重として 0.5h おき, 前と 同様にして荷重と伸びの関係を測定した。

(ii) 第2回試験の試料は前と同一の240mm²を用い両端の固定方法は今回は鋼線,アルミ線を一体にチャックする合金端子付の方法を用いた。試験機は前回と同様であり, 歪線は単線歪線をACSR の外層の峯にそい貼りつけ測定した。

(3) 測定結果および考察

(i) 第1回試験の測定結果は第3図の通りである。 第3図において荷重と伸びの関係は A, B, C 点以上 では荷重を下げてくると伸びは低下するが, A, B, C 点 以下では反対に伸びがます傾向を示している。これは A, B, C 点でアルミの弾性伸びは零になり, 応力が零 になる。すなわち, これらの点以下では鋼線が応力を受 け持つことになるのでアルミ線に笑いを生ずることにな りアルミ線に曲りを生ずるので歪計には伸びとして現わ れて来ると考えられる。

- 第4図 240 mm² ACSR のアルミ外層の荷重と
 伸びの関係
 (合金鋳込チャックを用いた場合)
- Fig. 4. Relation between Load and Elongation for Aluminum Component Wire of 240 mm² ACSR
- たゞし ε: 伸び
 - **P**: 荷重
 - A: 断面積
 - E: ヤング率

ここで P=13,000 kg, $A=10\times50 \text{ mm}^2$, $E=2.1\times10^4 \text{ kg/mm}^{2(4)}$ を用いると

 $\varepsilon = \frac{13,000}{500 \times 2.1 \times 10^4} = 1.24 \times 10^{-3}$

となる。一方,実験値の方は 1.20×10-3 であり, 差は 3% であることがわかつた。

(ii) 第2回試験の測定結果は第4図の通りである。 第4図において荷重を下げて来るとある点で屈折点を生 ずることは前回同様である。なお,アルミ線の伸びが前 回に比し,小さく出ているのは端子の影響が出ているも のと考えられる。

[III] 610 mm² ACSR のアルミ外層の伸び

(1) アルミ外層の伸び

本試験に使用した試料は 610 mm² ACSR の長さ約1 mのものを選び,両端の固定方法は予備実験(ii)に用い たものと同様な合金端子付とした。試験機は 30 t オル ゼン横型引張試験機を使用し,伸びの測定には単線歪線 をアルミ線の谷にそい貼りつけ測定した。

試験方法は第2表(次頁参照)に示すような荷重をかけ時間をおいた後測定した。なお始めの荷重 7.5t は安全係数を見込んでの実際にかゝる可能性ある最高限度のものとして決定した。

試験結果は第5図(次頁参照)の通りである。第5図 において荷重を下げてくるにしたがつてある点で屈折を 生ずることは前回と同様な傾向を示しており,各荷重の

- 第2表 610 mm², 590 mm² ACSR の永久伸び (%)
- Table 2. Relation between Load and Permanent Elongation of 610 mm² and 590 mm² ACSR

⇒.₽ wr	荷重	負荷時間	計	算	値	実験値
武 科	(t)	(h)	ACSR	鋼線	アルミ線	アルミ線
	7.5	1.0	0	0	0.005	0.02
610 mm ²	10.0	1.0	0.006	0	0.03	0.025
ACSR	12.5	0.5	0.04	0.003	0.07	0.065
	15.0	0.5	0.09	0.010	0.15	0.145
	8.5	1.0	0	0	0.003	_
590 mm ²	11.4	1.0	0.01	0	0.015	-
ACSR	14.0	0.5	0.03	0	0.045	
	17.0	0.5	0.07	0.003	0.100	

第3表 610 mm² ACSR の永久伸び Table 3. Relation between Load and

Permanent Elongation

試 料	荷 重 (t)	負荷時間 (n)	屈折点の荷重 (t)	永久伸び (%)
	7.5	24.0	1.0	0.02
610 mm ²	10.0	1.0	1.0	0.025
ACSR	12.5	0.5	1.5	0.065
inite and	15.0	0.5	3.0	0.145

- 第5図 610 mm² ACSR のアルミ外層の荷重と 伸びの関係
- Fig.5. Relation between Load and Elongation for Aluminum Component Wire of 610 mm² ACSR

場合について荷重と伸びの関係を表にしてみると第3表 のようになる。また屈折点における荷重と伸びとの関係 を図示すれば第6図のようになり、ある荷重以上では荷 重が増すにしたがい急激に伸びの量が増すことがわか る。

つぎに撚線の見掛けの弾性係数と第5図よりの弾性係 数を比較して見る。

今各素線間には滑りがなく,同様に伸縮し,アルミお よび鋼心にかかる張力が弾性限度を超えないとすると, 撚線の見掛けの弾性係数は次式⁽⁵⁾で計算される。

E_{Al}: アルミ線の弾性係数

A_{st}: 鋼線の断面積

A_{Al}: アルミ線の断面積

こゝで、 $E_{st} = 2.1 \times 10^6 \text{ kg/cm}^2$ 、 $E_{Al} = 0.63 \times 10^6 \text{ kg/cm}^2$ 、 $A_{st} = 0.8 \text{ cm}^2$ 、 $A_{Al} = 6.1 \text{ cm}^2$ として計算すると、ACSR の見掛けの弾性係数は

 $E_{ACSR} = rac{2.1 imes 0.8 + 0.63 imes 6.1}{6.1 + 0.8} imes 10^6$ = 0.80 \times 10^6 kg/cm²

- 第6図 610 mm² ACSR のアルミ外層の荷重と 永久伸びの関係
- Fig. 6. Relation between Load and Permanent Elongation for Aluminum Component Wire of 610 mm² ACSR

一方,第5図より,外層アルミ素線の伸びより見掛けの弾性係数を求めると

荷重,伸び線図の直線の部分の傾斜の角度を α とすれば

たゞし P: 荷重 $\frac{Al}{l}$: 伸び また弾性体の弾性係数をE, 断面積をAとすれば $\frac{A}{P} = E \frac{Al}{l} \dots (4)$ なる関係がある。

超高圧送電用 610 mm², 590 mm² ACSR (鋼心アルミ撚線)の鋼線およびアルミ線の伸び

(3)(4)式より

 $\tan \alpha = EA$ (5)

すなわち $E_{ACSR} = \frac{\tan \alpha}{A_{st} + A_{Al}}$ (6)

(6) 式を用いて第5図より E_{ACSR} を求めると

 $E_{ACSR} = 0.965 \times 10^6 \text{ kg/cm}^2$ となり、計算値よりやや大きな値を示す。この差は撚り の影響等によるものと考えられる。

(3) アルミ外層の繰返荷重による伸び

本実験に使用した試料は前回と同じく 610mm² ACS R,長さ1.6mのもので,両端の固定方法は同じく合金 端子付のものを使用した。なお,従来試験機の記録紙に よる測定で撚線の伸びの誤差の少ない測定方法がえにく かつたので今回は第7図に示すような合金チャックの中

に目付ピンを鋳込む方法⁽⁶⁾を取り,伸びの誤差の大きな 原因である端子部分のガタを除く方法を採つた。

前回の引張試験結果より試験荷重を 10t と決定し, 1時間おいた後荷重を下げながらアルミ外層素線の伸び を測定した。繰返回数は 15 回とした。

歪線による繰返引張試験の結果は第8図の通りである。

第8図について考えると繰返の重なるにしたがつて線 は次第に右の方にづれ,ある程度の永久伸びの増加が見 えるが間隙は次第にせまくなつている。また繰返回数の 増加とともにアルミ線の笑いの生ずる荷重が低くなるよ うな傾向を示しているが,これは鋼線に永久伸びを生じ たためと考えられる。

一方,試験機の記録紙にとつた伸びの量は非常に小さ く出ており図上ではほとんど現われていない。すなわち ACSRとしての伸びは非常に小さいことを示した。

- [IV] 610 mm², 590 mm² ACSR の鋼線(内層)
 およびアルミ線(外層)の荷重と伸び
 (計算値)
- (1) 試験荷重の決定

第7図 撚 線 伸 び 記 録 方 法 Fig.7. Recording Method of Elongation of ACSR 610 mm² および 590² mm² の ACSR の比較実験を行 うに当り,試験条件を同一にする必要があるので,この 場合の条件として,架線スパンおよびディップを同一と 仮定する。

今,スパンをS,ディップをD,線の単位長当り自重 をWとすると、ACSR にかゝる張力Tは次式⁽⁷⁾で表わ される。

ただし α: 常数

第8図

610 mm² ACSR のアルミ外層 の荷重と伸びの関係(繰返荷重) (荷重 10t)

Fig. 8.

Relation between Load and Elongation for Aluminum Component Wire of 610 mm² ACSR when the Load Repeated (10 t)

----- 145 ------

(7)式の関係を図示すれば第9図の通りである。 なお(7)式より 610 mm² および 590 mm² ACSR の 実験荷重を第2表の通り決定した。

(2) アルミ素線および鋼素線の荷重と伸びおよび荷重分担

ACSR の荷重, 伸び線図および永久伸び線図を作図す るためには素線の荷重, 伸び線図が必要である。単一素 線の引張り試験を示すと第10図および第11図の通りであ る。すなわち第10 図は 610 mm² ACSR 用アルミ素線 3.8 ¢, 590 mm² ACSR 用アルミ素線 5.0 ¢ の値であり, 第11図は 610 mm² ACSR 用鋼線 3.8 ¢ および 590 mm² ACSR 用鋼線 3.0 ¢ についてのそれぞれの荷重, 伸び線図である。

以上の結果を用いて,610 mm² および 590 mm² AC SR の荷重,伸びおよび荷重分担を作図すると第12図お よび第13図のようである。作図に当つてはつぎの仮定を おいた。

(i) 撚線効果(摩擦など)の影響はない。

(ii) 撚線は軸方向に均一に伸ばされている。

以上の仮定にもとづいてアルミ撚線の荷重に一本の素線の伸び ε における荷重 T_{Al} を本数 N_{Al} 倍した T_{Al} N_{Al} となる。同様にして $T_{st}N_{st}$ を求めると, ACSR の荷重は $T_{Al}N_{Al}+T_{st}N_{st}$ となる。

第12図および第13図において上側の曲線はそれぞれ ACSRとしての荷重,伸び線図を示し,下側の曲線は鋼 撚線のみの荷重と伸びの関係を示している。したがつて 荷重Pにおける鋼撚線とアルミ撚線の荷重分担は P₁, P₂ としてそれぞれ求められる。

第10図 アルミ素線の荷重と伸びの関係(計算値)

Fig. 10. Relation between Load and Elongation for Aluminum Wire Diameter 5.0 mm and 3.8 mm (Calculating Value)

第11図 鋼素線の荷重と伸びの関係(計算値)

Fig.11. Relation between Load Elongation for Steel Wire Diameter 3.8 mm and 3.0 mm (Calculating Value)

(3) ACSR の永久伸びおよび荷重と伸び

第12図および第13図より任意の荷重における ACSR の伸びの値が求められる。試験中 ACSR の弾性係数は

- 第12図 610 mm² ACSR の荷重と伸びの関係 (計算値)
- Fig. 12. Relation between Load and Elongation for 610 mm² ACSR (Calculating Value)

超高圧送電用 610 mm², 590 mm² ACSR (鋼心アルミ撚線)の鋼線およびアルミ線の伸び

不変であるとして各荷重をかけたときの鋼およびアルミ の永久伸びを求めると第2表のようになる。第2表の結 果を用いて各荷重にて所定時間おいた後、次第に荷重を 下げてきた場合の荷重と伸びの関係を作図すると第14図 および第15図のようになる。第14図および第15図におい て点線ADに抵抗線歪計で測定した場合のアルミ線の笑 いの出方をこれにならつて示したものであり, AB部は

鋼撚線とアルミ撚線が合体で受けもつ部分であり, AC 部分は鋼撚線のみが受けもつた荷重と伸びの関係を示し た理想的関係図である。

本方法によつて算出した永久伸びと前節の試験結果と を 610 mm² ACSR について比較すると第2表のように なる。第2表の永久伸びの値は実験値と計算値がよく近 寄つていることがわかつた。

[V] 610 mm², 590 mm² ACSR の鋼線(内層) およびアルミ線(外層)の伸び(実験値)

(1) 試 料

本実験においては ACSR の内層鋼撚線の伸び測定が 目的であるので, 内層鋼線に抵抗線歪線を張つた試料を 作ることにした。 歪線は前記と同様に真直にし, その両 端は長さ1m, 外径 0.35mm のエナメル線を熔接して リード線とした。

アルミ層を第16図(次頁参照)のように撚合せた。上 記の方法により内層鋼線に歪線を張りつけた試料の両端 を合金端子とした。

さらにアルミ 撚線の外層にも 歪線を 張り付け, 内層鋼 撚線および外層アルミ撚線の伸びが同時に測定し得るよ うに試料を準備した。

- 0.2 E 0.4 0 伸び(%)
- 590 mm² ACSR の荷重と伸びの関係 第13 図 (計算值)
- Relation between Load and Elon-Fig. 13. gation for 590 mm² ACSR (Calculated Value)

610 mm² ACSR の荷重と伸びの関係 第14 図 (計算值)

Relation between Load and Elon-Fig. 14. gation for 610 mm² ACSR (Calculated Value)

(2) 610 mm² ACSR の荷重と伸び

前述の方法によつて作製した 610 mm² ACSR の試料 を用い 30t オルゼン横型引張試験機を使用し,抵抗線 歪計により荷重と伸びの関係を内層鋼撚線および外層ア

- 590 mm² ACSR の荷重と伸びの関係 第15 図 (計算值)
- Relation between Load and Elon-Fig. 15. gation for 590 mm² ACSR (Calculated Value)

日立評論 送 変 電 特 集 号 別冊第7号

ルミ撚線について同時に測定を行つた。その際の試験荷 重は第2表の通りであり歪線による試験結果は第17図に 示す通りである。なお、本試験は撚線の伸びの測定には 参考として試験機の記録紙に荷重と伸び線図を画かせる 方法も併用した。

(3) 590 mm² ACSR の荷重と伸び

前記の場合と同一方法により 590 mm² ACSR の内層 鋼撚線および外層アルミ撚線について伸びを測定した結 果は第18図のようである。なお,本実験に用いた試験荷 重は第2表の通りである。

(4) 結果の検討

本実験の結果 610 mm², 590 mm² ACSR などの内層 鋼撚線の荷重と伸びの関係が抵抗線歪線を使用して測定 可能であることがわかつたが,試料作製には非常な困難 がともなつた。

第17図および第18図に示す実験結果で内層鋼線に荷重 が多くかかつたことは本実験が特殊な試験であるので従 来の方法と異るため,端子付の影響がでている。これに ついては今後検討を進めて行く予定である。

弾性係数については 610 mm², 590 mm² ACSR とも に実験値が計算値より大きくでているが,これについて は撚線効果, 歪線の修正係数の影響が入つてきていると 考えられる。

架線におけるスパンの長さ,ディップを一定と考えた 場合自重による荷重範囲では外層アルミ撚線の永久伸び はほぼ同一程度とみられるようである。なお試験荷重決 定にあたり最小破壊荷重の比をとつたとすると610mm² ACSR の最小破壊荷重 18.35 t, 590 mm² ACSR は

第17図 610 mm² ACSR の内層鋼線および外層ア ルミ線の荷重と伸びの関係

Fig. 17. Relation between Load and Elongation for Steel Component Wire (Inner Layer) and Aluminum Component Wire (Outer Layer) Construsting 610 mm² ACSR

- 第16図 ACSR 鋼線に歪線取付後のアルミ線 撚込作業
- Fig.16. Stranding of Aluminum Wire (Outer Layer) after the Strain Gauges Set in the Steel Wire (Inner Layer)

第18図 590 mm² ACSR の内層鋼線および外層 アルミ線の荷重と伸びの関係

Fig. 18. Relation between Load and Elongation for Steel Component Wire (Inner Layer) and Aluminum Component Wire (Outer Layer) Constructing 590 mm² ACSR

超高圧送電用 610 mm², 590 mm² ACSR (鋼心アルミ撚線)の鋼線およびアルミ線の伸び

24.25t になつているから 610 mm² ACSR 7.5t に対 し, 590 mm² ACSR は 9.9t になるので,比較結果は 610 mm² ACSR の場合もう少し有利な条件となる。

〔VI〕結 言

以上の結果を総括すると

- (1) ACSRの伸び測定に抵抗線歪線を分解して単線 歪線として使用し、その修正係数をかけて使用す ると精度が下らないことがわかつた。
- (2) 610 mm², 590 mm² ACSR などについて内層 鋼撚線およびアルミ撚線外層の荷重と伸びの関係 を単線歪線を使用して測定しうることがあきらか になつた。
- (3) 610 mm², ACSR のアルミ撚線外層の伸びは計 算値と実験値とが近似であることがわかつた。
- (4) 見掛けの弾性係数については 610 mm², 590 mm² ACSR とも実験値は計算値よりやや大きく 出ている。これは撚線効果の影響と考えられる。
- (5) 610 mm², 590 mm² ACSR の伸びの測定結果,

外層アルミ撚線に比較し内層鋼撚線に荷重が多くかいつたことは本実験が特殊試験であるため端子

付の影響がでていると考えれる。

終りに本実験に当り種々御指導御鞭撻を賜つた電源開 発会社,山本送電課長,江口,岡田両課長代理および日 立電線工場,内藤部長,久本,大和両課長ならびに実験 に協力した清宮,小岩両氏に深謝する。

参考文献

- (1) 磯部: 電気三学会連合大会講演論文集 P. 336(昭 28)
- (2) 磯部,小口: 電気学会支部連合大会講演論文集
 P. 316 (昭 28)
- (3) W.B. Dobie: Electrical Resistance Strain Gauge (1950)
- (4) 機械工学便覧第4篇: P.12 (昭 26)
- (5) 電気学会: 送電編送電工学 [I] P. 55 (昭27-5)
- (6) 籔内: 材料試験 2 8. 15 (1953, 9)
- (7) 電気学会: 送電編送電工学 [II] P. 305(昭 27.4)

新案の紹介

実用新案 第406879号

単極整流器水冷装置

本案は水冷式単極水銀整流器の槽の周囲に施したウオ ータージャケットの底を思い切つて抜けるようにして内 部の清掃を可能となし,水垢による冷却効果の減退を防 止せんとしたものである。すなわちち従来は第1図に見 るように冷却水套を構成する槽壁1と2とは上下におい てWのごとく熔接されていたから水套内の水垢を除去す ることは至難であつた。第2図および第3図は本案によ るもので1と2による水套の下部環状空所に締付座10 を適当箇数熔接固着し、これにスタッドボルト B を樹 て、環状閉塞底板 11 の孔をボルトBに合せて下方から 水套の底に当てがい,締付螺頭12によつて緊締せしめた もので、P1 は板11と7との間に介装したパッキング、 P2 は12 と11 との間のパッキングである。この構造に よれば通常使用時に水洩れの心配は全然なく,又水套の 底は容易に抜けるから非常に便利になった。なお板 11 の着脱が水套の底部真下で行える点は一般に陰極部分附 近は狭くできているだけに実際上極めて好都合である。 (宮崎)

-149 -

水 銀 器 流 整

本案は多極型水銀整流器に於て構内水銀蒸気が凝縮し て水銀粒となつて陰極水銀溜上に落下してくるコースの 中間を改良したもので, 粒が陰極水銀溜上にいたる直前 に一旦陰極槽壁内面に叩きつけられる従来の構造(第1 図参照)ではそこで SP に示すごとく水銀粒は飛沫とな つて四散するが,この四散現象は整流器の動作上有害な

ものであるから極力避けなければならない。第2図およ び第3図は上記の欠点を除去する改良構造である。これ らの図中1は凝縮室,2は水銀受樋,3は2に垂下固着し た複数本の導管で、これらによつて水銀は主槽4の下部 壁面上に流下するように設計される。5 は導管3の下端 と槽4の壁面との間に作つた小水銀溜で第2図では小函 を設けた場合,第3図では4の壁に掘設した場合を示す。 かくすれば管3を伝わつて降下する水銀はまづ溜5に 入つてこれを充満した上溢出口Mから静かにこぼれ落ち シュ現象が全然起きないことになる。尚水銀中の塵埃は 6のように管3の末端内に溜り溢出水銀はこれによつて 一応浄化されるから陰極水銀の汚れ防止の点からも有効

実用新案 第408577号

木 村 治 鐘

水銀整流器の励弧装置

本考案の励弧装置は励弧極の取付位置に斬新性がある。図における1は真 空槽,2は陽極,3は水銀陰極,4は陰極板,5は絶縁陰極壁,6は陽極板, 7 は陽極絶縁筒で槽1は全体として真空密に封塞される。本案はこの図から わかるように絶縁陰極壁5を上下に二つ割にした合せ目から励弧極8を陰極 室内に臨ませたことを特長とするものである。従来励弧極8は槽1を絶縁貫 通して支持させるかまたは陽極板6を貫通して垂下支持させるかその他幾つ かの型があるが,これ等は構造,工作ともに簡単にはゆかず実際上種々の困 難を伴うものであつた。

しかるに本考案によれば貫通のために特に絶縁を施す必要なく構造工作共 に簡単容易な利点があり、その上励弧極面が水銀陰極面3に十分接近し、水 銀面のどの部分からも比較的近い所に励弧極8のいづれかの部分が存在する ことになるので、励弧極の電弧電圧低く、励弧電力も小である許りでなく、 電弧電圧のフラッキが少なく極めて安定な効果がある。 (宮崎)

