遠心清浄機の動搖運転

――船舶等動揺物に取付けられた場合の安全運転に関する考察――

川 崎 光 彦*

Oscillating Operation of Centrifugal Purifier

—Consideration on the Operation of Centrifugal Purifier

Used on Marine or Other Oscillating Equipment—

By Mitsuhiko Kawasaki Taga Works, Hitachi, Ltd.

Abstract

Following the steady growth of application field, the centrifugal purifier has been engaging a greater attention of the industrial circles concerned. Especially on shipboard, this machine has come to assume an important role comparable to that of the main machine, being used for the purification of diesel engine fuels, lubricating oil for turbine, etc.

As compared with the common rotating machines, the centrifugal purifier is designed and built at the sacrifice of the rigidity of its rotating shaft part. Still it is required to be driven at so high speed that full consideration needs to be given to secure for this part sufficient strength against oscillation particularly when the machine is to be used on shipboard.

In the marine service, the machine is subjected to the strain at the part of shaft, which is caused by gyro moment and gravity moment arising from oscillation. Also, the revolving bowl tends to shift from its position and in its extremity the machine will possibly be found impossible to continue operation.

The writer, who has been devoted to the solution of this problem, recently tested Hitachi Type 6 DP-F centrifugal purifier by means of the oscillation testing machine and observed phenomena resulted from the oscillating operation of the machine.

From this experimental study, he grasped the movement of the revolving bowl and clarified how moment and strain are produced while the machine is driven under oscillation and, as a result, could confirm the conditions for the safe operation of the centrifugal purifiers.

[I] 緒 言

遠心清浄機は回転筒を高速回転せしめ、混合している 2種の液体、または液体中の固形微粒物をおのおのに働く遠心力差を利用して分離する機械で、近年各産業にわたつて広く使用され、そのため各方面で関心を持たれるようになつて来た。特に船舶関係においてはディーゼル船におけるディーゼル燃料の清浄用や、エンヂン潤滑油の清浄用に、またタービン船におけるタービン油の清浄

* 日立製作所多賀工場

用として必要欠くことのできぬ機械で,その性能が主機 におよぼす影響は大きく,主機同様重視されている。

遠心清浄機の歴史は古く、また相当昔から国産化も行われれているが、これに関する文献はきわめて少い。特に船舶において使用される場合の特殊条件、すなわち据付面の動揺が清浄機の運転におよぼす影響などの報告例などは見受けられぬようである。遠心清浄機は後述のごとくその性質上回転系のバネ常数が一般回転機に比して著しく低く、かつ高速回転を行うので、船舶での使用の場合は耐動揺性について十分な検討を要する。すなわち

動揺時発生するデャイロモーメントおよび重力モーメントにより軸部に応力を発生し、また回転筒は変位し、これがはなはだしい場合は運転に支障を生じることが考えられる。

昭和30年8月

これらの問題につき日立製作所ではかねてより研究を 行つていたが、ここに動揺運転時における発生応力およ び回転筒の動きなどに関する実験およびその検討結果に ついて記し、参考に供する次第である。

はじめに実験に用いた日立 6 DP-F 型遠心清浄機を紹介し、ついで実験および検討結果について発表する。

[II] 6 DP-F 型遠心清浄機の構造および仕様

(1) 構造

本機は一般に分離板型高速遠心清浄機とも称され,回 転筒内に多数の分離板を有する高速遠心清浄機である。 本機の回転要部は第1図に示すごとくブラケットに固定 軸の下部が挿入され,その固定軸にボールベアリングを 介して筒状の回転軸が取付けられている。回転軸はその 上端に回転筒を支持し,またその下方をプーリー部とし 電動機によつて直接エンドレスベルトを介して高速回転 される。その外観および詳細構造を第2図および第3図 に示す。

(2) 緩衝機構

遠心清浄機は一般高速回転機と異り,常時使用者にお

第1図 日立 6 DP-F 型遠心清淨機の回転要部

Fig. 1. Principal Parts of Type 6 DP-F Centrifugal Purifier

いて主要回転部(回転筒)の分解,組立を行うため若干のアンバランス下においても運転可能のごとくする必要があるので緩衝機構を具備している。本機においては固定軸が緩衝作用を行うものであるが,その主旨を簡単に説明する。

第4図において回転筒のアンバランスにより発生する 遠心力Fは固定軸に $F\sin \omega t$ として作用する。

この振動系に関しては(1)式のごとく表わされる。

$$M\ddot{x} = F \sin \omega t - Kx \dots (1)$$

ここに M=回転筒質量

x = 変位

ω=回転角速度

F=攪乱力の絶対値

K=振動系のバネ常数

(1)式より

$$x = C_1 \cos pt + C_2 \sin pt + \frac{F}{K} \cdot \frac{\sin \omega t}{1 - \frac{\omega^2}{p^2}} \dots (2)$$

ただし
$$p=\sqrt{\frac{K}{M}}=$$
固有円振動数

(2)式の前項は自由振動を表わし、第3項は強制振動を示す。この強制振動によって支持部に発生する力Pは (3)式で表わされる。

$$P = F \frac{\sin \omega t}{1 - \frac{\omega^2}{b^2}} \dots (3)$$

したがつて回転系の固有振動数 P を回転角速度 ω より著しく低くすることにより支持部に発生する力を減じうるので、若干のアンバランスの下における運転も可能となる。しかし固有振動数の低下は回転系の剛性低下を意味し、これが著しい場合は動揺運転に耐えぬこととなる。本機においては後述のごとくこの点について十分吟味がなされている。

第2図 日立 6 DP-F 型 遠 心 清 淨 機 Fig. 2. Hitachi Type 6 DP-F Centrifugal Purifier

第3図 日立6DP-F型遠心清淨機構造図

Fig. 3. Details of Type 6 DP-F Centrifugal Purifier

6DP-F 型遠心清浄機の回転部の仕様はつぎのごとくである。

Į	回	転	諳	重:	量.				٠.	•	 ٠	 ٠	٠.	٠.	٠.	٠.	Ç	90]	kg
	回車	坛僧	j慣	生モ	<i>></i>	ィン	'					 •	1	3.8	8 1	g	· c	m	• s ²
I			転		数.		• • •					 90		٠.	5	,9	00	rp	m
Į		転	筒	周	速.		• :•:::	• (•)	٠,	•						1	05	m	ı/s
F	引	有	振	重力	粉.												1	1.5	\sim

[III] 動揺により回転軸部に発生する モーメント

動揺運転時に清浄機の回転軸部には「傾斜により生じる回転筒重量による重力モーメント」と「動揺角速度により生じるデャイロモーメント」の両者が発生し、軸を曲げるごとく作用する。この場合軸の剛性が低いときには発生モーメントによる応力が大となり、なお軸の動きが大となる場合も予想される。

(1) 重力モーメント

第5図のごとく傾斜せる状態において、回転筒重量により発生するモーメント m_w は軸下端部において(4)式のごとくなる。

$$m_W = Mgh \sin \theta$$
......(4)
ただし $M = 回転筒質量$

第4図 6DP-F 型遠心清淨機 の緩衝機構

Fig. 4. Neutralization Mechanism of Type 6 DP-F Centrifugal Purifier

mw=重 カモーメントベクトル mg=デヤイロモーメントベクトル

第5図 重力モーメントおよびヂャイロモー メントの発生状況

Fig. 5. Occurrence of Gravity Moment and Gyro Moment

h =回転筒重心より軸下端までの長さ $\theta =$ 傾斜角度

傾斜角 θ の最大を θ_m ,動揺周期を Ω なる円振動数で表わせば(5)式となる。

$$\theta = \theta_m \sin \Omega t \dots (5)$$

したがつて回転筒重量による重力モーメントは(6)式 により表わされる。

$$m_W = Mgh \sin(\theta_m \sin \Omega t) = Mgh (\sin \theta_m) \sin \Omega t$$
.....(6)

(2) ヂャイロモーメント

動揺により軸部に発生するヂャイロモーメント m_G は (7)式のごとくなる。

$$m_G = \frac{I_\zeta \,\omega \,d\theta}{dt} \dots (7)$$

ただし I_{ς} =回転筒慣性モーメントまた (5) 式より

$$\frac{d\theta}{dt} = \theta_m \Omega \cos \Omega t \dots (8)$$

したがつてデャイロモーメントは(9)式により表わされる。

$$m_G = I_c \cdot \omega \cdot \theta_m \cdot \Omega \cdot \cos \Omega t \dots (9)$$

(6), (9) 式よりあきらかなごとく,重力モーメントと デャイロモーメントとは時間的に $\frac{\pi}{2}$ の位相差を有し, また第5図のごとく両者の方向は常に互に直角方向に働くため傾斜角 0 より θ_m の間では両者の合成モーメント が作用する。また前式よりこの合成モーメントは m_W , m_G のいずれか夫なる方の最大値より常に小であること がわかる。

[IV] 運転時における発生応力

前述のモーメントにより回転軸部に発生する応力が過 大の場合には該部の寿命は低下を来し、またはなはだし い場合は繰返し応力による疲労などにて運転に危険をも たらすことも考えられる。

本機の回転部の構造は前述のごとく回転部全体が一本の固定軸で支持され、かつこの固定軸は下フレームの上部より懸垂したブラケットで支持されている。したがつて固定軸の下端部およびブラケット部に最大モーメントが生じることが考えられ、該部に発生する応力が検討の対象となる。もちろん該部の応力計算値は僅かであるが特に重要部であるため、実際の応力発生状況およびその値を実験により確めた。つぎにその結果について説明する。

(1) 実験方法

応力発生状況は抵抗線式歪計を使用して測定し,かつ 応力値は歪より算出した。

第6図 日立6DP-F 型遠心清淨機動揺試験

Fig.6. Oscillation Test of Type 6 DP-F Centrifugal Purifier

第7図 固定軸応力測定部 Fig.7. Measuring Point in Fixed Shaft

動揺運転は**第6図**に示すごとき動揺試験機により動揺 条件として最大傾斜 θ_m は 30° ,動揺周期 Ω は 1 分間に 3往復とした。なおブラケットの形状は**第1図**に示すごと くその断面は矩形状をなしており,X'X' 軸断面係数 Z_{xx} はY'Y' 軸断面係数 Z_{yy} の約 2 倍である。(ブラケットは エンドレスベルトの交換に備えてベルトのループ内を懸 垂する必要があり,このような形状となつている。)

このため動揺運転時の最大モーメント (本実験の場合は最大重力モーメント)がブラケットの Y'Y' 断面に作

用するごとく XX 方向(第1図参照) に動揺せしめ,動揺運転中の固定軸下端部およびブラケット側面の実際歪を測定した。なお起動時および定置運転時における場合も測定して動揺運転時の状態と比較した。

測定器は共和無線製 DM 型抵抗線式歪測定器を使用 し,電磁オシログラフにて記録した。

(2) 応力測定箇所

固定軸は片持支持となつており、そのため最大応力は 軸下端部に発生する。したがつて固定軸には第7図に示 すごとく軸下端部にゲージを2箇貼附し、動揺方向およ びこれと直角方向に発生する歪を測定した。

またブラケットには**第8図**に示すごとく2箇所にゲージを貼附し、YY軸に対するベンディングによる側面歪を測定した。

(3) 実験結果

固定軸の応力発生状況を**第9図**,またブラケットの応力発生状況を**第10図**に示す。

- (A) 固定軸の応力発生状況
- (a) 起動時の発生応力

起動時における最大応力は $8\sim11$ \sim で生じており、オシログラムより感度補正を行うとつぎのごとくなる。

X方向(ベルト直角方向)最大応力= 0.79 kg/mm^2 Y方向(ベルト方向) 最大応力= 1.5 kg/mm^2 この最大応力は危険速度における固定軸の振動によるものである。

(b) 定置運転時の発生応力

定置運転時における応力値はつぎのごとくである) X方向応力= $0.6 \, \mathrm{kg/mm^2}$

第8図 ブラケット応力測定部 Fig. 8. Measuring Point in Bracket

Y方向応力=0.52 kg/mm²

すなわちX方向、Y方向とも大差はない。

(c) 動揺運転時の発生応力

動揺運転時における応力は動揺周期とともに変化し、動揺半周期で最大引張りおよび最大圧縮内力を生じる。 またX方向(動揺方向)の最大応力とY方向(動揺直角方向)の最大応力とは $\frac{\pi}{2}$ の位相差を有し、その最大応力値はそれぞれつぎのごとくである。

X方向最大応力= 4.2 kg/mm^2 Y方向最大応力= 3.46 kg/mm^2

(B) ブラケットの応力発生状況

ブラケット側面に発生する応力はそれぞれつぎに示す ごとくである。

	運転時に於ける固定軸応力						
起動時	X- START - 805 ~ 1079 kg/mm² X2 11/~ Y 1.5 kg/mm² X2						
定置運転時	Y MANUFACTURE OF THE PROPERTY						
	0° +30° 0° -30° 0° +30° 0°						
動摇運転時	X A STATE OF THE S						

第9図 固定軸応力発生状況

Fig. 9. Stress in Fixed Shaft

	0020 km/ 2V2								
	A 0.001 187 mm * X Z	0037 kg/mm² x 2							
起動時	B 0037kg/mm²X2								
定置運転時	A - 1070kg/mm²X2 B - 1070kg/mm²X2								
	-37° (1° +30° 0° -30° 0° +30° 028/12/mm/X2,	_							
動摇運転時	A - A - A - A - A - A - A - A - A - A -								
更几花 理 型石 日寺	B . 0.19kg/mm²X2								

第10図 ブラケット応力発生状況 Fig.10. Stress in Bracket

第 1 表 運転時における固定軸下部および ブラケット側面の発生応力最大値

Table 1. Max. Stress in Fixed Shaft and Bracket

運	固定車	曲下部	ブラケツト側面				
をを発作	X 方 向 (動揺方向)	Y 方向 (動揺直角) 方向	A 部	B部			
起 動 時(kg/mm ²)	0.79	1.5	0.037	0.037			
定置運転時 (kg/mm^2)	0.6	0.52	0.026	0.020			
動摇運転時(kg/mm²)	4.2	3.46	0.25	0.19			

(a) 起動時の発生応力

A部最大応力= 0.037 kg/mm^2 B部最大応力= 0.037 kg/mm^2

(b) 定置運転時の発生応力

A部応力= 0.026 kg/mm^2 B部応力= 0.020 kg/mm^2

(c) 動揺運転時の発生応力

A部最大応力=0.25 kg/mm² B部最大応力=0.19 kg/mm²

なおこの最大応力は動揺半周期で引張りより圧縮に変化する。また A, B 部ともに同周期で応力変化を生じている。

(C) 固定軸およびブラケット応力値

以上の各場合における応力値を整理すると**第1表**に示すごとくである。

[V] 動揺運転時における回転軸の動き

以上運転時における応力発生状況について述べたが、 耐動揺性についてはさらに回転軸の動きについて検討を 要する。

すなわち動揺時において回転軸の動きが大なる場合は 回転筒は受液カバーなどの静止部に接触し,自励振動を 発生することとなる。いうまでもなくこの動きは前述の モーメントにより生じるものである。

つぎに動揺運転時における回転筒の動きについての実 験結果を説明する。

(1) 実験方法

動揺運転時における X, Y 方向(動揺方向および直角方向)の回転筒動きを測定するため第11図および第12図に示すごとく、回転筒上方の側面に接近して電磁型変換器を直角方向に2箇所対向せしめ、回転筒の動きにしたがつて生じる変換器と回転筒側面との空隙変化をインダクタンスの変化に置換して電磁オシログラフにて記録した。なお動揺の諸条件は応力測定時と同一である。

(2) 実験結果

動揺運転時における回転筒の動きを第13図に示す。

第11図 実 験 装 置 (その 1) Fig.11. Testing Equipment

第12図 実 験 装 置 (その 1)

Fig. 12. Testing Equipment

図に示すごとく回転筒の動きは動揺周期とともに変化し,かつ中心よりの変位最大値はつぎのごとくである。

X方向(動揺方向)動き= $1.3\,\mathrm{mm}$

Y方向(動揺直角方向)動き= $1.0 \,\mathrm{mm}$

勿論この動きの傾向は固定軸の応力発生状況と全く同一である。

[VI] 実験結果の検討

(1) 固定軸に発生する応力

固定軸の最大応力は動揺運転時に生じ,その値は定置運転時の約7倍に達するが,その絶対値は $4.2\,\mathrm{kg/mm^2}$ で,使用材料の許容応力値に対しきわめて低いものであることがわかる。たま動揺時における動揺方向の最大応力と直角方向の最大応力とは時間的に $\frac{\pi}{2}$ の位相差を有している。これは既述のごとく重力モーメントとデャイロモーメントが $\frac{\pi}{2}$ の位相差を有しているためである。またX方向(動揺方向)の最大応力は最大重力モーメントによるものであり,Y方向(直角方向)の最大応力は最大デャイロモーメントによるもので,この関係は第14 図に示すごとくである。なおY方向に瞬時的な応力増加の見受けられるのは動揺試験機のガタのため動揺方向にショックを生ずる箇所があり,そのため発生するデャイロモーメントのためである。

また最大応力の定測値と計算値との比較はつぎのごと くである。

A 最大応力の計算値と実測値との比較

(a) 最大重力モーメントによる応力

最大重力モーメントによる応力計算値は(4)式より

最大重力モーメント $m_{Wmax} = Mgh \sin \theta_m$...(10)本実験の場合は

$$Mg = 90 \text{ kg}$$
 $h = 440 \text{ mm}$
 $\theta_m = 30^\circ$

:. $m_{W_{max}} = 1,980 \text{ kg} \cdot \text{cm}$

また固定軸下端部の断面係数 Zs は

$$Z_{\rm S} = 4.209 \, {\rm cm}^3$$

したがつて前者より最大重力モーメントによつて固定 軸下端部に生じる応力計算値 σ_W は (11) は式で表わさ れる。

$$\sigma_W = \frac{m_{Wmax}}{Z_S} = 4.7 \text{ kg/mm}^2.....(11)$$

この値はX方向の最大応力測定値 $4.2 \, \mathrm{kg/mm^2}$ と大体一致している。

(b) 最大デャイロモーメントによる応力

最大ヂャイロモーメントによる応力計算値は(7)式 より

第13 図 動揺運転時における回転筒上部の動き

Fig. 13. Movement of Bowl Top in Oscillating Operation

第14図 動揺と最大モーメントとの関係

Fig. 14. Relation of Oscillation and Max. Moment

最大ヂャイロモーメント
$$m_{Gmax} = I_{\zeta} \omega \left(\frac{d\theta}{dt}\right)_{max}$$
(12)

本実験の場合は

$$I_{\zeta} = 13.8 \text{ kg} \cdot \text{cm} \cdot \text{s}^2$$

 $\omega = 618 \text{ rad/s}$

$$\left(\frac{d\theta}{dt}\right)_{max} = \theta_m \Omega$$

$$\Omega = 0.314 \text{ rad/s}$$

$$m_{Gmax} = I_{\zeta} m \theta_m \Omega = 1,410 \text{ kg} \cdot \text{cm}$$

したがつて最大デャイロモーメントによつて固定軸下端部に生じる応力計算値 σ_G は

$$\sigma_G = \frac{m_{Gmax}}{Z_S} = 3.34 \text{ kg/mm}^2 \dots (13)$$

この値はY方向の最大応力測定値 $3.46 \, \mathrm{kg/mm^2}$ と大体一致する。

(2) ブラケットに発生する応力

ブラケットに発生する応力も動揺運転時に最大となり,定置運転時の約 10 倍の応力を生じ,その絶対値は 0.25 kg/mm²で,使用材料の許容応力値に対してきわめて低いものであることがわかる。また動揺半周期で最大引張りより最大圧縮に変化する。この応力は重力モーメントによるものである。

発生応力値の検討結果はつぎのごとくである。すなわち 第8図に示すブラケット根本部Cにおける断面係数 Z_{YY} はつぎの通りである。

$Z_{yy} = 97.1 \text{ cm}^3$

また該部に発生する最大重力モーメント mwmax の計 算値はつぎのごとくなる。

$$m_{W_{max}} = 2,400 \text{ kg/cm}$$

したがつて該部の最大応力計算値 σ_B は

$$\sigma_B = \frac{m_{Wmax}}{Z_{yy}} = 0.247 \text{ kg/mm}^2 \dots (14)$$

ゲージを貼附した曲り部分の計算は複雑であるが, そ の実測値は 0.25 kg/mm² で根本部の計算値とほぼ一致 している。

(3) 回転筒の動き

回転筒の動きは回転中心より最大 1.3mm にて該部に おける静止部(受液カバー)とのギャップに対し十分な る余裕を有し,安全に運転のできることが確認された。 また回転筒の最大変位は重力モーメントによるもので, その動きの状況は固定軸下端部の応力発生状況からも推 察することができる。

[VII] 結 言

以上日立 6DP-F 型遠心清浄機の動揺運転下における 応力発生状況および回転筒の動きについて述べた。

本実験によって

- (1) 固定軸およびブラケットには動揺運転時におい ては定置運転時の約7~10倍の応力を生じる。
- (2) 動揺運転時の最大応力および回転筒の最大変位 は重力モーメントによつて生じる。すなわち傾斜 のために生じる回転筒重量による曲げモーメント が最大応力をもたらす。
- (3) 最大応力値は固定軸において 4.2 kg/mm², ブ ラケットにおいては 0.25 kg/mm² で, その絶対 値は少く, また回転筒の動きも受液カバーとの空 隙に対し十分なる余裕を有し, 動揺運転に対し安 全であることが確認された。

以上のごとく本実験により動揺運転下における遠心清 浄機の運転状況の傾向があきらかとなつたと考える。ま た他の動揺条件に対しての傾向も本実験結果より容易に 判断することができうるものと考える。

なお本研究に際して援助御協力頂いた日立製作所日立研 究所今尾主任研究員,小堀,奥山研究員その他関係各位 に厚く御礼申し上げる次第である。

実用新案 第414434号

111 光

置 油 浄 清 装

残部には枠体3を載せ、枠体の内部空所において台車1 上に送油ポンプ4および5を載置し枠体3の上部には,

正面図

本案は台車1の一部に遠心清淨機2を載置し、台車の トレイ6をのせ、このトレイの一部に圧濾機7を配置し

たものである。以上のごとく枠体内にポンプ4,5をの せてその台床面積を節約しうるものであり, かつトレイ 6は圧濾機7をのせるのみでなく残余空所は遠心清淨機 2の分解掃除を行う場合掃除台を兼用しうるものである から,場所の如何を問わず随時なしうるとともに、附近 を油で汚損することのない便利な可搬式油清淨装置を提 供できるものである。(田中)

