受信用真空管の入力アドミタンスの測定

Measurement of Input Admittance of Receiving Tubes at Ultra High Frequency

伊	藤	久*	星	野	文	雄*
	Hisashi Ito					

内 容 梗 概

数十メガサイクル以上の高い周波数域では真空管の入力アドミタンスがその動作に大きな影響を及ぼすよう になる。

このたび微小入力に対する短絡入力アドミタンス測定器を製作し,各種の受信管について測定を行った。本稿はその測定結果報告である。

— 40 —

1. 緒 言

真空管の動作を定量的に取扱うために、いわゆる三定数などのパ ラメータと適当な等価回路との組合わせが用いられる。周波数が次 第に高くなって10~100 Mc 程度以上になると、真空管の外部端子 (ベースピン、キャップなど)に現われている電圧または電流と、 真空管の実際の電極そのものに現われている電圧、電流とを等しい とみなすことができなくなるほか、入力アドミタンスにコンダクタ ンス成分が生じ、入力電圧と出力電流の間に位相差を生ずるように 行平面電極三極管では(2)式のように表わされる⁽¹⁾。ただしすべて の電子の初速度は0であり,かつカソードの面と平行な方向の速度 成分は0であると仮定する。

$$y_e = g_m \left[\frac{\Upsilon_4(j\omega\tau_1)}{\Upsilon_6(j\omega\tau_1)} - \frac{\Upsilon_3(j\omega\tau_1)\Upsilon_3(j\omega\tau_2)}{\Upsilon_6(j\omega\tau_1)} \right] \dots \dots \dots \dots (2)$$

ここに *τ*1, *τ*2 はそれぞれカソード グリッド間およびグリッド プレート間の電子走行時間であり、また

$$\Upsilon_3(\alpha) = \frac{2}{\alpha^2} (1 - e^{-\alpha} - \alpha e^{-\alpha})$$

なる。これはリード線のインダクタンス,電極間静電容量,電子走 行時間の効果,放射そのほかの損失などの総合効果によるものであ る。

このような高い周波数域では,真空管を一つの四端子網と考えて そのパラメータを扱うのが実際的である。第1図は四端子網として 表わした真空管の等価回路を示し,(1)式はこの回路の方程式を短 絡アドミタンスパラメータを使って表わしたものである。

 $\frac{i_1 = y_{11}v_1 + y_{12}v_2}{i_2 = y_{21}v_1 + y_{22}v_2}$ (1)

ここに

y11: 短絡入力アドミタンス

y12: フィードバックアドミタンス

y21: 相互アドミタンス

y22: 短絡出力アドミタンス

である。このうち y11 は高周波領域での真空管の動作にとって特に 重要である。

2. 受信用真空管の短絡入力アドミタンス

比較的低い周波数では入力アドミタンスはほぼ純サセプタンス分 だけから成るとみなすことができる。しかし次第に周波数が高くな るにつれてコンダクタンス成分をも示すようになる。この原因とし ては

- (1) カソード グリッド間あるいはグリッド プレート間の電
 子走行時間の効果
- (2) カソードその他の電極のリードのインダクタンスの効果
- (3) 表皮効果によるリードの抵抗増加の効果
- (4) 誘電体損失や放射損失による効果

$$\Upsilon_4(\alpha) = \frac{6}{\alpha^3} [\alpha - 2 + (\alpha + 2) e^{-\alpha}]$$

$$\Gamma_{6}(\alpha) = \frac{12}{\alpha^{4}} \left[\frac{\alpha^{3}}{6} - \alpha + 2 - (\alpha + 2)e^{-\alpha^{2}} \right]$$

である。 wr が1よりも小さい範囲では(2)式は(3)式のようになる⁽¹⁾。

$$y_{e} \doteq \frac{g_{m}\omega^{2}\tau_{1}^{2}}{20} \left[1 + \frac{44}{9} \frac{\tau_{2}}{\tau_{1}} + 5 \left(\frac{\tau_{2}}{\tau_{1}} \right)^{2} \right] + \frac{j\omega\tau_{1}g_{m}}{6} \left(1 + 4\frac{\tau_{2}}{\tau_{1}} \right) \dots (3)$$

5 極管では,スクリーングリッドをプレートと考え,gm としてカ ソード電流に対する値をとればよい。

2.2 リードインダクタンスの効果

カソードリードおよびプレートリードのインダクタンスは入力ア ドミタンスの一つの原因になる。今**第2**図のようにプレートおよび カソードリードにインダクタンスがあると,カソード接地形増幅器 としての入力コンダクタンスは(4)式のようになる⁽⁴⁾。

 $g_L = \omega^2 (L_k C_1 - L_p C_2) g_m$ (4) ただし電子走行時間を無視し,

$$\omega \ll \sqrt{\frac{1}{L_k C_1}}, \quad \omega \ll \sqrt{\frac{1}{L_p C_2}}, \quad \omega C_1 \ll g_m$$

と仮定した。また5極管の場合には *L_p* がスクリーングリッドリー ドのインダクタンスを、*C₂がスクリーングリッド・コントロールグ* リッド間の容量を表わし、第2項に対してはスクリーングリッド電 流に対する *g_m* を用いる必要がある。

入力アドミタンス測定器

入力アドミタンスの測定方法にはいろいろのものが提案されてい

などがある。現在普通に用いられているつまみステムやボタンステ ムの受信管では上記のうち(3),(4)の影響は(1),(2)に比較し て小さい。

2.1 電子アドミタンス

微小入力信号に対する短絡入力アドミタンスのうち電子走行時間 効果にもとづく入力アドミタンス分すなわち電子アドミタンスは平

* 日立製作所茂原工場

第1図 四端子網として表わした真空 管の等価回路

第2図 カソードリー ドおよびプレートリ ードインダクタンス

同調]イル 信号入力端子 第2回 伝教スカマドミタンス測定男の外継

第3図 短絡入力アドミタンス測定器の外観

の変化分

4C': 供試管をソケットからはずし, 上記と同じ操作をした時の VCの変化分

そのとき、供試管の入力コンダクタンスは(5)式で与えられる。

また入力キャパシタンスは供試管をソケットにさした時とはずし

第1表 短絡入刀/下	ミタンス測定器のおもな性能		
測 定 周 波 数	30, 50, 100, 150, 200, 250 Mc		
入力コンダクタンス測定範囲	25~1,000 μσ		
入力コンダクタンス確度	±20%以内		
入力キャパシタンス測定範囲	1~15 pF		
入力キャパシタンス確度	±(10%+0.3 pF)以内		
測定受信管品種	6AK5, 6CB6, 6R-R8, 6BQ7-A (各ユニット)およびこれらと同様のピ ン接続を有する受信管		

るが,集中定数回路を利用できるのはせいぜい 200~300 Mc 程度までで,それ以上になると分布定数回路を使う必要がある。

今回製作した入力アドミタンス測定器はサセプタンス変化法を利 用したもので、容量置換法によって入力キャパシタンスも測定する ことができる。第3図にその外観を示す。

測定原理は次のとおりである(第4図参照)。信号発生器の出力を 粗結合の電磁結合によって供試管グリッドの同調回路に供給し,次 に定義するような *AC*, *AC* を測定する。

 ΔC :供試管をソケットにさし、規定の条件で動作させてバリコ ン VC を同調点の前後に変化させ、同調回路の共振出力電圧 が同調点の両側でそれぞれ同調点の値の $\frac{1}{\sqrt{2}}$ になる時の VC た時の同調点の変化で求められる。

本測定器のブロックダイヤグラムを第5図に,また主要性能を第 1表に示す。

この測定器のおもな特長を説明する。

周波数によって供試管グリッドの同調回路を構成するインダクタ ンスをさしかえるようになっている。インダクタンスは一端短絡の 同軸線路を用い,低い周波数では中心導体に固定のインダクタンス を付加してある。検波増幅部は,ターレットチューナによって周波 数を選ぶ。

入力コンダクタンスは周波数によって大きく変化するから,測定 周波数を正確におさえる必要がある。そのため,水晶発振器を自蔵 し,その高調波と入力信号とのビートをとって周波数を確認するよ うにした。

測定にあたっては, 共振出力電圧を $\frac{1}{\sqrt{2}}$ にする代りに信号入力を $\sqrt{2}$ 倍にして共振出力電圧がもとと同じ値になる点を測定すること にした。これは測定中供試管グリッドに加わる励振電圧をなるべく 一定値に保つためである。

4. 測 定 例

本測定器を使って測定した結果の中からおもなものを抜粋して参考に供する。

第5図 短絡入力アドミタンス測定器のブロック図

- 41 -

42 昭和35年2月

日 立 評 論

第42卷第2号

242

500 -

4.1 入力信号の大きさ

入力信号の大きさが測定結果に及ぼす影響を6AK5について調べた一例を第6図に示す。これでもわかるように,一般に入力信号の大きさが100mV程度以下であれば微小信号とみなして差つかえない。

4.2 入力コンダクタンスの周波数特性

入力コンダクタンスの周波数特性の例を**第7,8**図に示す。これ らはいずれも先にあげた各種の成分を総合した全入力コンダクタン スの値であって,ほぼ二乗特性を示している。

4.3 入力コンダクタンスとgm との関係

電子入力コンダクタンスおよびリードインダクタンスにもとづく

K5 をとり上げて電極寸法および動作条件から電子走行時間を求め、電子入力コンダクタンスと gm との関係を計算してみると第9 図のようになり、上記の事実が確認される。

供試管の動作点を変えて、gmと全入力コンダクタンスの関係を測定した結果を第10,11 図に示す。なお第10 図にはカットオフにおける入力コンダクタンスの値を引いた値を示してある。 第10 図 でgm が高くなると直線関係からはずれてくるのは、グリッドバイアスが浅くなって、初速度電流が流れてコンダクタンス分を生ずるためである。このことはスクリーングリッド電圧を変えると、直線関係からはずれる点が順次移動すること、その点に相当するグリッドバイアスの値がほぼ一定で -1~-2V であることなどで明らかである。第11 図で全入力コンダクタンスと gm とはほぼ比例しており、これによっても誘電体損失や放射損失などに起因するコンダクタンス成分が比較的小さいことがわかる。 電子走行時間の計算は次の(6)式および(7)式によった⁽³⁾。

入力コンダクタンスがそれぞれgmにほぼ比例することは(3)式ま たは(4)式から明らかである。 電子入力コンダクタンスは(3)式の右辺第一項で表わされる。動 作点を変えると電子走行時間(おもに τ₁)も変化するので,厳密に はgmと単純な比例関係にはない。しかしこの影響は比較的小さく, 実際上ほぼ比例関係が成立すると考えることができる。試みに6A

$$\tau_1 = \left(\frac{6\,m\varepsilon_0}{e}\right)^{\frac{1}{3}} d_1^{\frac{1}{3}} i^{-\frac{1}{3}} (s) \dots (6)$$

受信用真空管の入力アドミタンスの測定

第12図 電子入力キャパシタンスと gm との関係

- m: 電子の質量 (9.1×10⁻³¹kg)
- e: 電子の電荷の絶対値 (1.6×10⁻¹⁹C)
- εo: 真空の誘電率 (8.86×10⁻¹²)

プレートで弾性衝突によって反射されてふたたびグリッドの近く までもどってくる電子があると、電子入力アドミタンスは(3)式よ りもさらに増加して(8)式のようになる⁽⁴⁾。

$$ye \doteq \frac{g_m \omega^2 \tau_1^2}{20} \left[1 + \frac{44}{9} \frac{\tau_2}{\tau_1} + 5 \left(\frac{\tau_2}{\tau_1} \right)^2 \right] \\ + rg_m \omega^2 \tau_1^2 \left[\frac{67}{120} + \frac{1}{\sigma} + \frac{112}{45} \frac{\tau_2}{\tau_1} + \frac{8}{3} \left(\frac{\tau_2}{\tau_1} \right)^2 \right]$$

243

d1: カソードグリッド間距離(m)

d2: グリッドプレート(第2グリッド)間距離(m)

i: 電流密度 (A/m²)

 E_p : プレート(第2グリッド)電圧(V)

また

ここ

$$V_g = \left[1 + \frac{1}{\mu} \left(1 + \frac{d_2}{d_1}\right) \frac{4}{3}\right]^{-1} \left(\frac{E_p}{\mu} + E_g\right) \quad (\mathbf{V})$$

ただし

-10

*E*g: グリッド電圧 (V)

µ: 増幅率

である。なお d₁ および d₂ は, カソード前面におけるカソードグリ ッド間の最大距離を基準とし, 電子の初速度は0であるとした。 (6)式でわかるように d₁ は三分の一乗できくので,カソードの前面 に電位の極小点ができるのを無視しても誤差は比較的小さくてす む。

4.4 入力キャパシタンスとgm との関係

真空管の入力キャパシタンスは,動作状態では冷状態の時にくら べて若干増加する。これは一部分はカソードの見かけの膨脹による もので,残りは電子入力キャパシタンスによるものである。後者は (3)式の右辺第二項で与えられ,ωτが1よりも小さい範囲では周波 数には無関係である。

真空管の gm と電子入力キャパシタンスとの関係を調べた結果を 第12 図に示す。測定はリードインダクタンスの影響をさけるため できるだけ低い周波数で行った。縦軸は,真空管のヒータを点火し 電流をカットオフの状態にした時の入力キャパシタンスの値からの 増加分を示す。図には(3)式によって計算した理論値を一緒に示し てあるが,特に6AK5の場合両者はよく一致している。

$$+\frac{j\omega\tau_1g_m}{6}\left(1+4\frac{\tau_2}{\tau_1}\right)+jrg_m\omega\tau_1\left[\frac{1}{2}+\frac{4}{3\sigma}+\frac{4}{3}\frac{\tau_2}{\tau_1}\right]$$

ただしrはプレートで反射する電子の入射電子に対する割合であり,また

 $\sigma = \left[1 + \frac{1}{\mu} \left(1 + \frac{d_2}{d_1}\right) \frac{4}{3}\right]^{-1}$

である。rはプレート電圧が高いほど小さくなるが,普通2~3% といわれる⁽⁴⁾。第12図では,三極管である 4BQ7-A および 4R-HH2 の場合に r=3% として(8)式によって計算した理論値をも 一緒に示した。反射を考えると実測値と理論値が非常によく一致す ることがわかる。

5. 結 言

以上今回製作した測定器の紹介およびそれを使って得られた測定 結果を報告した。

今後の問題としては,絶対校正,測定周波数の拡大,四端子アド ミタンスの測定器製作などが残されている。

なお本測定器を製作するに当り東京大学工学部岡村教授にご助言 をいただいた。また実際の製作には安藤電気株式会社の絶大なご協 力をいただいた。ここに厚くお礼申しあげる。

豪 考 文 献

- (1) W. E. Benham & I. A. Harris: The UHF Performance of Receiving Valves. p. 55~63 (1957 Macdonald & Co.)
- (2) 同上 p.17~19
- (3) 同上 p.35, p.47
- (4) 同上 p. 84, p. 94

