回転翼の振動

Vibration of Turbine Moving Bucket Blade

小 堀 与 一* 大 森 基 次* Yoichi Kobori Motoji Omori

内 容 梗 概

回転中の翼の固有振動数fが静止時の振動数 f_0 より高くなることは $f^2 = f_0^2 + B\left(\frac{\omega}{2\pi}\right)^2$ なる関係として知られている。遠心力係数Bは翼断面が均一か特定の場合のみ理論上既知であるが、大形タービン翼のような変断面翼では不明である。大形タービン翼の設計資料とするため、翼幅一定で、厚さがくさび状に先薄となった翼のBについて計算ならびに実験を行った。その結果、Bは計算実験ともに翼の厚さ比(先端厚/根本厚)が小になるとともに増す傾向があり、厚さ比が 0.5~1.0 では実験値は計算値と大差がないが、厚さ比が 0.5~0となった場合は実験値は計算値より 8~22% 大となることがわかった。

1

1. 緒 言

蒸気タービンブレード,電動機冷却ファン,送風機ファンなどの 設計においては回転時の翼の固有振動数を回転数ならびに外部から の刺激たとえば回転にともなう蒸気,空気の脈動あるいは電気的機 械的トルクの変動などのサイクルに一致させてはならない。そのた めには回転時の翼の固有振動数がどうなるかをあらかじめ知ってお

く必要がある。周知のようにこの振動数fは遠心力の作用により静止時の振動数 f_0 より高くなり、一般に遠心力係数をB、回転角速度を ω とすれば

$$f^2 = f_0^2 + B\left(rac{\omega}{2\pi}
ight)^2$$

なる形で表わされる⁽¹⁾⁽²⁾。*B*は翼が取付けられてあるボスの半径と 翼長の比,振動形および翼の形状により異なった値をとる。*B*の値は 均一断面および特定な変断面翼の場合は計算上既知であるが⁽³⁾⁽⁴⁾, 大形タービン翼のような断面の場合は不明である。本論文では主と して大形タービン翼に対して設計資料をうるため翼断面を幅一定, 厚さ先薄状のくさび状とみなし,かかる翼の*B*について計算と実験 から検討することにした。

4. 供試翼および実験方法⁽⁵⁾

2.1 供 試 翼

ж.

第1図(a)~(c)に実験に供した翼の形状および寸法を示す。翼 はボス部分を一体とし、最初2種(No.1および No.6)を作り、必要 な測定をなし、その測定が終了したのちそれぞれ翼部のみ先端方向 にテーパ状に削り、所要の測定を逐次行った。そこで翼はテーパの 大なるにしたがって番号を No.2~No.5および No.7~No.10を付 してある。翼の製作にあたっては、翼厚を翼根元から先端まで 5 mm 間隔に翼幅の中央部、両端部の計60点についてマイクロメータ で測定しつつ翼を仕上げることにより、No.5および No.10を除い て、厚さの誤差を±3%以下とすることができた。No.5 および No.10は先端厚0のくさび形翼であるが、先端厚は工作上0となし えず、それぞれ 0.07 および 0.06 mm となっている。

以上の翼(No.1~No.10)は回転面に平行に取付けられた場合(取

傾きをもって取付けられた場合である。第3図は翼の取付け状況お よび振動測定装置の詳細である。ボス半径R, 翼長1なる翼をDC モータの軸端に取付け, 速度 ω で回転しながら翼を発振器および電 磁石により加振する。翼の振動は翼先端付近に設置した容量形振動 計の電極板により電気容量変化として変換され, 振動計に導かれた

付角 θ=0)であるが、Bは同一翼でも取付角が変わると変わる。この影響を検討するため、均一断面翼 No.11 (翼部の寸法は No.1 または No.6 と同様)を用いて、取付角を変えた場合についても実験した。
2.2 回転中の振動数測定
第2図に実験装置を示す。図は No.11 異が回転面に θ=45 度の
* 日立製作所日立研究所

のち電磁オシログラフにより記録される。翼の固有振動数と発振器 のサイクルが一致したときは振幅は極大となる。このときの振動の 振動数をオシログラムから読みとり、回転時の固有振動数fを求め る。静止時の固有振動数 f_0 は別に測っておき既知であるので、f、 f_0 および ω が既知となり、計算式

$$f^2 = f_0^2 + B\left(\frac{\omega}{2\pi}\right)^2$$
.....(1)

装 置 第2図 実 験

よりBを求めることができる。

2.3 翼の振幅分布の測定

Bを計算から求めるには、後述するように回転しない場合の共振 状態における翼の振幅分布が知られていると都合がよい。各翼を静 止状態で電磁石により共振振動せしめ、このときの振動状況を写真

撮影することにより振幅分布を決定した。

3. 計算方法ならびに結果

式 3.1 計 算 回転時の翼の固有振動数を計算するには,静止時の振動数f₀を関 係式

により,また遠心力による復原力のみ作用した場合の振動数を

$$B\left(\frac{\omega}{2\pi}\right)^2 = \frac{\int_0^l A(R+x) dx \int_0^x \left(\frac{dX}{dx}\right)^2 dx}{\int_0^l AX^2 dx} \dots \dots \dots (3)$$

ただし

- *l*: 翼長
- x: 翼根元から測った翼上の距離 (l=1.0 とするとx は 0 から 1.0の間の範囲の値をとる)
- A: x点における翼断面積
- X: xの関数で, 翼自重によるたわみ曲線を表わす(実際にこれ を求めるには翼の共振振動時における振幅の翼長に対する 分布を求め、これをxの簡単な関数として表わせばよい)。
- *R*: ボス半径
- g: 重力の加速度

により求める必要がある(6)。(3)式より

第4図 くさび状翼の荷重分布

3.2 回転面に対する取付角 $\theta = 0$ の場合のBの計算

(a) Xを理論的に与える場合

論

評

立

Ħ

たわみ曲線Xは"片持ばりのたわみ曲線の微分方程式"(7)

よりみいだすことができる。上式で M は任意断面の曲げモーメ ント, EI は曲げこわさ, d^2X/dx^2 は曲率である。くさび状翼の Mは第4図のように、分布荷重の総量Wを等分布荷重と三角形 の分布荷重の二つに分けて考え,両荷重の総量をそれぞれ W1 お よび W2とすれば

$$M = \frac{W_1}{2l} (l - x)^2 + \frac{W_2}{3l^2} (l - x)^3 \dots (7)$$

また、断面二次モーメントIは翼幅をb,根元の厚さを h_0 とすれ ば

$$I = \frac{1}{12} b h_0^3 (1 + mx)^3 \dots (8)$$

となる。(7)および(8)を(6)式に代入して

$$\frac{d^{2}X}{dx^{2}} = \frac{2\gamma}{Eh_{0}^{3}l} \left\{ \frac{-(h_{0}-h_{1})x^{3}+3h_{0}lx^{2}-3(h_{0}+h_{1})l^{2}x+(h_{0}+2h_{1})l^{3}}{(1+mx)^{3}} \right\}$$

____ 2 ____

である。本実験においてはくさび状翼なるゆえ, 翼断面積Aは根元 断面積 Ao に対して次式で表わすことができる。 ここに、 mは厚さのこう配を表わす定数である。

が得られる。(9)式からたわみ曲線を表わすXの式を求めること ができる。 各翼について(4), (5)および(9)式を用いてBの値を計算す ると第1表(a)のようになる。計算過程の一例を付録(1)に示 すっ R/l=1 および R/l=0.5 のときの B の翼厚比に対する関係を 第5図(○印の実線)に示す。

¥

たわみ曲線の式として各翼を通じ

 $X = ax^2 + bx^3 + cx^4$ (10) とおく。係数α, bおよび c は翼種に特有な値を有し、無次元な 値である。a, b, cを実際に求めるには x が翼長の 1, 0.75 およ び0.5 倍の位置での振幅を求め, 三元一次方程式を作ればよい。こ の結果Xがきまったら(10),(5)および(4)式よりBは求まる。 各翼に対する計算結果を第1表(b)に示す。また計算の詳細を付 録(2)に示す。R/l=1 および R/l=0.5のときのBの翼厚比に対 する関係を第5図の×印破線に示す。

3.3 回転面に対する取付角 θ = 0 の場合の計算

回転面に対しある角度をもって取付けられた均一断面翼について は次式が与えられている(8)。

この式から R/l=1 および 0.5, また θ=45 度および 90 度の場合に ついて計算した結果を第6図の○印実線に示す。

(均一断面翼 No.11 の場合) 第6図 取付角と遠心力係数の関係

翼*		k			選				備 考 (B の 値)				
No	先端厚		<i>B</i> の 式	No	先端厚	ガス半径P	<i>B</i> の 式	平均Bの式	R	P/l = 1.0	1	R/l=0.5	
NO.	h1	小 小 十臣 A		110.	h1	ルハ+E K			No.	В	No.	В	
1	1.2	100	1.547 $\left(\frac{R}{l}\right)$ +1.154	6	1.2	50	$1.551\left(\frac{-R}{l}\right)+1.163$	$1.549\left(\frac{-R}{l}\right)+1.159$	1	2.708	6	1,934	
2	0.9	100	1.565 $\left(\frac{-R}{l}\right)$ +1.158	7	0.9	50	$1.599\left(\frac{-R}{l}\right)+1.193$	$1.582\left(\frac{-R}{l}\right)+1.176$	2	2.758	7	1.967	
3	0.6	100	1.610 $\left(\frac{R}{l}\right)$ +1.173	8	0.6	50	1.678 $\left(\frac{R}{l}\right)$ +1.267	1.644 $\left(\frac{R}{l}\right)$ +1.220	3	2,864	8	2.042	

第1表(h) Bの計算値 (静止時の振動振転を実測) これを其にして計算した値)

第7図 No.6 翼の振動振幅分布

_____ 4 _____

第2表 x=1, 0.75 および 0.5 の位置の実測振動 振幅ならびにたわみ計算値

翼	実 注	則振動振	幅	たわみ計算値					
番号	x = 1	x=0.75	x=0.5	x=1	x=0.75	x = 0.5			
1	1	0.668	0.361	1	0.668	0.354			
2	1	0.656	0.358	1	0.656	0.337			
3	1	0.648	0.348	1	0.638	0.314			
4	1	0.583	0.294	1	0.609	0.284			
5	1	0.456	0.192	1	0.563	0.250			
6	1	0.660	0.353	1	0.668	0.354			
7	1	0.678	0.351	1	0.656	0.337			
8	1	0.626	0.296	1	0.638	0.314			
9	1	0.595	0.261	1	0.609	0.284			
10	1	0.447	0.191	1	0.563	0.250			

(x=1 の位置の振幅またはたわみに対する比で表わす)

4. 実験結果

4.1 振動振幅分布

静止翼の共振振動の振幅分布の写真から, X=0.5 l, 0.75 l, 1.0 l の
位置の振幅を読みとり,自由端の振幅に対する比として表わした結
果を第2表左方に示す。参考までに(9)式を積分して得られるたわ
みXの x=0.5 l, 0.75 l, 1.0 l の各位置における計算値も第2表右方
に示す。また共振振動の写真の一例を第7図に示す。
4.2 回転中の振動数および遠心力係数
回転数が0(静止), 1,000, 2,000, 3,000 rpm のときの各翼の固有振
動数の測定結果を第3表(a)(b)に示す。またこの測定結果から
(1)式により各回転数別に B を求めた結果もあわせて第3表(a)
(b)に示す。この表のBは回転数により相当のばらつきがあるので

(Bは回転数に関係しないはずである),これを平均して各表の終り に示した(この平均値は表の横および縦欄の各測定値を相互に比較 し,著しく異なるものは除外して算出した)。第3表(a)(b)のB の平均値より,翼厚比とBの関係および取付角とBの関係をそれぞ れ第5図および第6図(いずれも・印実線)に示す。また振動のオシ ログラムの一例を第8図に示す。

5. 結果の検討

5.1 取付角 *θ*=0 の場合

翼厚比が1の場合のBについては、Campbell⁽⁹⁾、小野⁽²⁾および鈴木氏⁽¹⁰⁾ などのいくつかの理論式があり、それぞれ異なった値を与える。Campbellの式は(4)式 (Rayleigh 法による式)を用いて翼厚比が1および0についてだけ計算しており、その結果は本報の計算結果(第1表(a)の 1.558 $\left(\frac{R}{l}\right)$ +1.173および 2.000(R/l)+1.333)と一致している。ここでは上記3者の理論式と実験から得た式とを比較してみる。

第3表(a)より、R/l=1 および 0.5 のときの実験値(No.1 は 2.766, No.6は1.935)は(4)式による計算値(No.1で2.731, No.6で 1.952) に対して、それぞれ+1.3%および -0.9%の差があり、小野氏 の式による値 (No.1 で 2.45, No.6で 1.725)に対してそれぞれ+12.9 %および +12.2%, また鈴木氏の式による値 (No.1 で 2.764, No. 6 で1.979)に対してそれぞれ+0.1%および-2.3%の差があり、本報 の実験値は(4)式または鈴木氏の式による計算値とほとんど一致す る。したがって回転翼の固有振動数を計算するに当り, Bとして諸 氏のいずれの式を採用するかにより値が異なってくるが、均一断面 翼については上記計算値と実験値との比較結果から(4)式によるB =1.558 (R/l)+1.173 なる式,または鈴木氏の式 (B=1.5709(R/l)+ 1.1934)のいずれかを用いるのが妥当と思われる。 第5図からBは実験値,計算値ともに翼厚比が小になるにつれ,曲 線をなして上昇することがわかる。しかも実験値と計算値との差は 翼厚比が小になるほど大きくなり、実験値は計算値に対し R/l=1 の場合で, 翼厚比が 1, 0.75, 0.5, 0.25, 0 についてそれぞれ +1.3% +0.6%, +0.8%, +8.8%, +22.2% であり, また R/l=0.5 の場 合はそれぞれ -0.9, +2.0, +7.9, +10.2, +12.2% 大である。す

回転発効が知り	異の振り 類	001
---------	-----------	-----

3.0

第3表(a) 固有振動数および遠心力係数の測定値 (取付角 θ=0)

		翼 No.	1	2	3	4	5	6	7	8	9	10		
		翼 長 1 100						100						
翼	Į	先 端 厚 h1	1.2	0.9	0.6	0.3	0	1.2	0.9	0.6	0.3	0		
4		根 元 厚 ho			1.2					1.2				
÷‡		翼 幅 b		12				12						
(mr	n)	ボス半径 R		100					50					
		R/l	1.0					0.5						
固	fo	静止	93.04	97.46	103.1	114.5	143.4	93.09	96.31	102.6	113.2	144.2		
有振		1,000 rpm	97.38	101.6	107.1	118.7	147.4	96.00	99.36	106.0	116.2	147.7		
動数	f	2,000 rpm	108.8	112.9	118.7	129.7	158.9	103.8	107.3	114.2	123.8	154.5		
c/s)		3,000 rpm	126.1	130.2	134.3	146.8	176.5	115.5	118.9	126.4	137.0	163.8		
(書		1,000 rpm	2.797	2.795	2.889	3.381	4.092	2.043	2.127	2.495	2.546	3.753		
心ナ	♪]	2,000 rpm	2.734	2.775	2.955	3.253	4.060	1.895	1.999	2.261	2.227	2.812		
係数	κ t	3,000 rpm	2.768	2.861	2.876	3.258	4.069	1.868	1.981	2.180	2.352	2.423		
В	3	平均	2.766	2.810	2.907	3.297	4.074	1.935	2.036	2.221	2.375	2.618		

第3表(b) 固有振動数および遠心係数の測定値 翼No.11,取付角 = 45°および 90°の場合)

		回転数	回 転 数 R/l=1.0			R/l = 0.5			
		(rpm)	$\theta = 45^{\circ}$	$\theta = 90^{\circ}$	$\theta = 45^{\circ}$	$\theta = 90^{\circ}$			
用+++F€L¥b	fo	静止	92.50	93.69	92.54	93.61			
<u> </u>		1,000	95.38	94.87	95.10	94.92 98.71			
(c/s)		2,000	104.7	103.1	101.4				
	*4	1,000	2.024	0.8232	1.684	0.8719			
速 心 刀 係 数		2,000	2.296	1.677	1.430	0.8909			
В		平 均	2.160	1.677	1.557	0.8814			

→→ たわみを理論的に計算し、これを 基にして求めた計算値

---×--- 静止時の振動のたわみを実側し これを基にして求めた計算値

備考: 翼 No.11 の寸法は翼 No.1 または翼 No.6 と同様

なわち翼厚比が1.0~0.5 では+8%以下で計算値と比較的よく合う が, 翼厚比が 0.5~0 では8%~22%の差を生じ一致しない。

このように,実験値が計算値に対し,翼厚比が小の場合ほど大き くなるのは,主として回転中の翼の振動形が静止時の振動形と異な るためと思われる。すなわち先薄の翼は回転時においてはフラッタ のように不安定な振動現象を生じて,先端部のみ,とくにたわみや すくなり,その結果Bが増大すると想像される。

R/l=1 および 0.5 の場合の測定結果から、 B_1 および B_2 を算出 し($B=B_1(R/l)+B_2$ としてある)、第9図(・印実線)に示す。実験 値は計算値(〇印実線)に比較してかなりのばらつきを示している。 この理由は主として上述の不安定な振動現象によるものと思われ る。

静止時の振幅分布の測定値を(10)式で表わし、これを(4)式に適 用して決定した B_1 , B_2 の平均値を第9図(×印破線)に示す。第9 図より、振幅分布の測定値を基にして得たBは各翼比を通じ、Xに 理論値(たわみの式による計算値)を与えた場合のBと比較的よく一 致し、R/l=1.0および 0.5について、各翼厚比を通じ差は最大3% である。これよりくさび状翼のBを求めるには、たわみ曲線を表わ す式として、 $X=ax^2+bx^3+cx^4$ を用いることは実用上さしつかえな

えることができれば、くさび状断面翼に限らず、別な変断面翼についても、比較的容易に(4)式を計算し、Bを求めることができる。 こころみに三角形先細翼(翼厚比=1,翼幅比=先端幅/根元幅=0)の 実測振幅分布 $X_{x=1}$: $X_{x=0.75}$: $X_{x=0.50}=1$: 0.603: 0.320 から前 と同様に(10)式の各係数を求め(a = 2.103, b = -2.189, c = 1.086となる)(10)式を決定し、これを用いて(4)式より Bを計算すると

B = 1.924 (R/l) + 1.191

となり、またたわみ曲線を理論的に与えて、すなわち

$$X = \frac{2\gamma}{3Eh_0^2} \left(\frac{x^4}{4} - lx^3 + \frac{3}{2} l^2 x^2 \right)$$

として計算すると

$$B = 1.944 \left(\frac{R}{1} \right) + 1.194$$

いことがわかる。(10)式で実測振幅のかわりにたわみの計算値(第 **2表** 右の各値)を用い,(10)式の*a*, *b*, *c* を定め、しかるのち(4)式 により*B*を計算した結果は、翼厚比 0.5 の場合は B=1.657(R/l)+ 1.240 となる。一方(9)式を積分して Xを決定し、このXを用いて (4)式により*B*を求めた結果は B=1.652(R/l)+1.232 となり、前 記の値とほぼ一致している。したがって翼断面積を簡単な*x*の関数 とし、3点の位置のXを静止時の実測振幅または図式計算により与

____ 5 ____

一致しているとみてよい。したがって、均一断面翼が回転面に対し 角度 θ をもつ場合の遠心力係数Bは $\theta=0$ のときのBより sin² θ だ け低下すること((11)式が理論上正しいこと)が実験的にも証明され たことになる。

6. 結 言

回転面に対する取付角度0なるくさび状断面翼の遠心力係数Bに 関し, Rayleigh の計算法による計算と実験を,また回転面に対す る取付角度が45度および90度の場合の均一断面翼のBに関し実験し 理論値と比較した。

(1) 取付角が0なる場合, Bは翼厚比(先端厚と根元厚の比)が 小になると計算値,実験値ともに増す(第5図参照)。

(2) 翼厚比の減少に対し、Bの増す割合は実験値が計算値より 大である。すなわち、R/l(ボス半径と翼長の比)=1 および 0.5 の Bの実験値は、翼厚比が 1~0.5 では計算値より 0~8%高く、
0.5~0 では 8~22%高くなる。(第5図参照)。

(3) Bの計算で, 翼のたわみ曲線を近似的に X = ax²+bx³+cx⁴
 と仮定し, これを静止翼の実測結果から求めて計算式に採用した
 場合と, Rayleigh の計算法から Bを正規に算出した場合とでは,
 各翼厚比の翼を通じ, 誤差は 3 %以下で一致する(第1表(a)(b)
 参照)。

(4) 取付角が $\theta \neq 0$ なる場合の均一断面翼のBは $\theta = 0$ なる場

$$\begin{aligned} \frac{dX}{dx} &= 0.9l^3 K \left\{ \frac{4 l^3}{81 (l - 0.75 x)^2} - \frac{16 l^2}{27 (l - 0.75 x)} + \frac{64}{27} x + C_1 \right\} \\ x &= 0 \ \emptyset \ge \underbrace{\$} \ \frac{dX}{dx} = 0 \qquad \therefore \ C_1 &= \frac{44}{81} l \\ \therefore \ X &= 0.9 l^3 K \left\{ \frac{16 l^3}{243 (l - 0.75 x)} + \frac{64}{81} l^2 \log \left(1 - \frac{0.75}{l} x \right) \right. \\ &+ \frac{32}{27} x^2 + \frac{44}{81} lx + c_2 \right\} \\ x &= 0 \ \emptyset \ge \underbrace{\$} \ X &= 0 \ \therefore \ C_2 &= \frac{-16 l^2}{243} \\ \therefore \ \mathcal{H} &\equiv \int_0^l (1 + mx) X^2 dx = \left[\left\{ -\frac{32}{3} l^5 \left(1 - \frac{0.75}{l} x \right)^2 \log \left(1 - \frac{0.75}{l} x \right)^2 \log \left(1 - \frac{0.75}{l} x \right)^2 \log \left(1 - \frac{0.75}{l} x \right) + \frac{32}{3} l^5 \left(1 - \frac{0.75}{l} x \right)^2 - 9 l x^4 + \frac{21}{2} l^2 x^3 + 12 l^3 x^2 \\ &- \frac{484}{27} l^5 \right\} \log \left(1 - \frac{0.75}{l} x \right) - \frac{16}{3} l^5 \left(1 - \frac{0.75}{l} x \right)^2 + \frac{1}{6,912} \\ &\left(-\frac{31,104}{l} x^6 + 15,552 x^5 + 67,959 l x^4 + 24,048 l^2 x^3 - 34,848 l^3 x^2 \\ &- 92,928 l^4 x \right) \right]_0^l &= 1.5053 l^5 \end{aligned}$$

つぎに分子を計算する。

合より $\sin^2\theta$ だけ低下するという理論は実験的にも正しい (第6 図参照)。

終りにのぞみ、本研究にあたり、日立製作所日立研究所今尾部長 よりご指導を賜わったことに対し厚くお礼申しあげる。

参考文献

- (1) H. Lamb and R. V. Southwell: Proc Roy. Soc., London, 99, 272~280 (1921)
- (2) 小野: 機械学会誌 27, 467~479 (大 10)
- (3) 渡辺: 機械学会東京臨時大会講演会前刷 7~13 (昭 25-10)
- (4) 妹沢克惟: 振動学上巻 288~293 (昭 24, 岩波書店)
- (5) Yoichi Kobori: Proc. Ist JNCTAM, 547 Vibration of Rotating Blades Having Cross Sections of Several Kinds (1952)
- (6) ティモシェンコ(谷下訳): 工業振動学 322(昭27 コロナ社)
- (7) 南日実: 材料強弱および弾性学 164~165 (昭 18 養賢堂)
- (8) M. J. Schilhansl: Jl, of Applied Mechanics 25, 28~30 (1958)
- (9) W. Campbell, W. C. Heckman: General Electric Co., Reprint from A. S. M. E Paper No. 1925
- (10) 鈴木: 航空学会誌 8, No. 75 713~722 (昭 16)

付録・遠心力係数の計算例

Xを理論的に与える場合の計算

No.4 翼について計算する。 $h_0=1.2$, $h_1=0.3$ であるから本文(5) 式のmは

$$m = -\frac{h_0 - h_1}{h_0 l} = -\frac{0.75}{l}$$

分子=
$$\int_0^l (1+mx) (R+x) dx \int_0^x \left(\frac{dX}{dx}\right)^2 dx = RI_1$$

+ $(mR+1)I_2 + mI_3$

とおけば

$$I_{1} = \left[\frac{l^{6}}{54 (l-0.75x)^{2}} - \frac{4 l^{5}}{3(l-0.75x)} + \left(\frac{482}{3} l^{3}x - \frac{2,222}{9} l^{4}\right)\log\left(1 - \frac{0.75}{l}x\right) + 12 x^{4} + 11 lx^{3} + \frac{1,657}{32} l^{2}x^{2} - \frac{6,631}{36} l^{3}x\right]_{0}^{l}$$

$$= 6.3940 l^{4}$$

$$\begin{split} I_{2} &= \left[\left(\frac{241}{3} l^{3}x^{2} - \frac{5,080}{27} l^{5} \right) \log \left(1 - \frac{0.75}{l} x \right) + \frac{2l^{7}}{81(l - 0.75 x)^{2}} \\ &- \frac{148 l^{6}}{81(l - 0.75 x)} + \frac{6,912}{720} x^{5} + \frac{5,940}{720} lx^{4} + \frac{24,855}{720} l^{2}x^{3} - \frac{37,390}{720} \\ l^{3}x^{2} - \frac{100,640}{720} l^{4}x \right]_{0}^{l} &= 5.0145 l^{5} \\ I_{3} &= \left[\left(\frac{482}{9} l^{3}x^{3} - \frac{46,128}{243} l^{6} \right) \log \left(1 - \frac{0.75}{l} x \right) + \frac{1}{77,760} \\ \left\{ 622,080 x^{6} + 513,216 lx^{5} + 2,013,255 l^{2}x^{4} - 1,998,000 l^{3}x^{3} \right. \end{split}$$

$$-4,046,400 l^{4} x^{2} - 10,928,640 l^{5} x + \frac{2,560 l^{8}}{(l-0.75 x)^{2}}$$
$$-\frac{194,560 l^{7}}{2}]^{l} = 4.1161 l^{6}$$

(9)式より

 $\frac{d^2X}{dx^2} = 0.9 \, l^3 K \left\{ \frac{-x^3 + 4 \, l \, x^2 - 5 \, l^2 \, x + 2 \, l^3}{(l - 0.75 \, x)^3} \right\}$

ただし

 $K = \frac{2\gamma}{Eh_0^{3}l}$

: 分子 = $2.6332 l^4 R + 1.9274 l^5$

 $(l - 0.75 x) \int_{0}^{1}$

 $\therefore B = 1.749 \left(\frac{R}{1}\right) + 1.280$

(2) Xを実測振動振幅から与える場合の計算 本文(4)式をみればわかるように断面積Aが常数かあるいはxの 簡単な関数なら,(4)式の積分は比較的容易にできる。くさび状翼

	回	転	翼	の	振	動	533
は A=A ₀ (1+mx)と表わ (4)式で分母分子の A ₀ は い。 (a) 一般式 (A)式の分子から計算-	うされるので, に消去できるの する。 <i>X=ax</i> ²	ー般式を導くこ っで、 A_0 はない $+bx^3+cx^4$ であ	ことができる。 ものとしてよ るから	∴	$RI_1 + (mR+1)$ $J_1 + mJ$ 値計算例 こついて計算す	$\frac{1}{I_2 + mI_3}{I_2}$	よるゆえ m=−1/4l
(4) 成 5 分子 = $\int_0^l \left\{ R + (mR) \right\}$ (9 $b^2 + 16 ac$) $x^5 + 4 bc$	$R+1)x+mx^{2}$	$ \left\{\frac{4}{3}a^{2}x^{3}+3a^{2}x$	$bx^4 + \frac{1}{5}$ R+1)I ₂ +mI ₃	である。ま <i>Xx</i> =1: <i>X</i> である。こ	た 第3表 より振 $x=0.75: X_{x}=0.5$ の値を本文(10) $X_{x=1}=a+b+$	幅比は =1:0.678:0.351 式に入れると - $c = 1$ 5 $a \pm 0.4219b \pm 0.316$	4 c = 0.678
ただし $I_1 = \frac{1}{3} a^2 l^4 + \frac{3}{5} ab l^5 - \frac{1}{5}$	$+\frac{1}{30}(9 b^2+16)$	$(5 ac) l^6 + \frac{4}{7} bcl^7$	$\frac{7}{7} + \frac{2}{7} c^2 l^8$	この方程式	$X_{x=0.75} = 0.302$ $X_{x=0.5} = 0.25 a$ より	+0.125 b +0.0625 c =	= 0.351
$I_{2} = \frac{4}{15} a^{2}l^{5} + \frac{1}{2} abl^{6} + \frac{1}{2}$ $I_{3} = \frac{2}{9} a^{2}l^{6} + \frac{3}{7} abl^{7} - \frac{3}{7} abl^{7$	$+\frac{1}{35}(9\ b^2+16)$ $+\frac{1}{40}(9\ b^2+16)$	$(5 ac) l^7 + \frac{1}{2} bcl^8$ $(5 ac) l^8 + \frac{4}{9} bcl^9$	$^{8}+rac{10}{63}c^{2}l^{9}$ $^{9}+rac{8}{35}c^{2}l^{10}$	a が求まる。 X となる。こ	=1.782, b = - したがってたわ =1.782 x ² -0.72 の係数a, b お	-0.7273, $c = -0.0523$ み曲線を表わす式 X_{1} 273 $x^{3} - 0.0523 x^{4}$ よび c の値を前記 I_{1}	3 よ 〜J2 に代入して
つぎに分母を計算する。 分母= $\int_0^l AX^2 dx = \int_0^l$ ただし	$(1+mx)(ax^2$	$+bx^3+cx^4)^2dx$	$=J_1+mJ_2$	$egin{array}{c} I_1 \ I_2 \ I_3 \ I_1 \ J_1 \end{array}$	$= 0.4219 l^{8}$ $= 0.3122 l^{9}$ $= 0.2495 l^{10}$ $= 0.2620 l^{9}$		
$a^2 t_5 + 1 c_5 t_6 + 1$	$1 (b^2 + 2ac)$	$17 \perp 1$ $hc^{18} \perp$	c^{2}_{19}	J_2	=0.2106 <i>l</i> ¹⁰		

宜 別	登録番号	名	称	L	場	別	氏		名		登録年	月日
: 許	257309	接触変流機運転	自動制御装置	E E	立工	場	吉	岡	孝 幸	t 3	34. 12	. 3
н ні <i>П</i>	257311	格子制御整流器の直	「流電圧調整装置	日	立工	場	平	Щ	克己	L	"	
							藤	木	勝美			
							浜	島藤	本 一	1		
	057400	** ** ** 平 ~ `Л	重 法 匸 剉 壮 署			坦	兩石	/////////////////////////////////////	王 一 直 舌 削	x .	34 12	, ,
"	257466		电机压削衣胆		표 エ 포 エ	勿提	tin	蓝藤	古 里 M 春 摊	É	/1. 12	
1/	257472	止 負 励 磁 用 原 了 唇 中 2 ×	介 IXI 词 登 奋		<u>У</u> , <u>Т</u>	勿	沿	藤	一前	ζ	11	
"	257478		2 伊 肬 衣 亘 妇 Ÿ 7 壮 署		<u>и</u> . т. д. т.	勿坦	这	藤	一间	τ	"	
"	257479	原于炉内武,			立工	場	大	木	新 彦	8	"	
	257460		平 · · · 平 男 伊 灌 基 置	日 王	立 工 分 工	場	西	木	喜 好	4	"	
	257407	办法 雪 与 继 朗 声 回 购	の直流遮断基置	国	分工	場	'」	山谷	徳太郎	3	"	
17	237409	义 / L L X 极 民 平 凹 歫	的區机產副衣匠	j==q	//		池	田	正一則	3		
"	257476	空気遮	断器	E	分工	場	安	滕	卓 剆	ß	"	
"	257481	限時動作油	入 制 動 器	E	分工	場	中	Щ	幸太郎	5	"	
"	257761	装甲配電盤における電	電動機回路開閉裝置	E	分工	場	安	藤	卓 則	s :	34. 12	2. 1
						117	小	杯	吉 淮		// 14 19	
"	257470	電 動 発 電	制 御 装 置	水	РL	場	 	不大	利信	- ·	54. 12	2.
							」 文	不川	昭三	Ē		
,,	257474	長 大 物 輸 送	田中間台車	纳	百丁	場	中	村	陽 -		"	
"	257307	雷動操作式ロータリ	ープラグバルブ	鱼	有丁	場	寺	Ħ	進	É :	34. 12	2. :
"	257473	流 休 変 速 機	の制御装置	鱼	有工	場	渡	部	富治		34. 12	2. 9
"	257475	前 中 弁	装置	鱼	有工	場	木	暮	健三良	ß	"	
A.K.	201110					2000-1005-00	Щ	内	章 正	:		
"	257468	時間に比例した電気	的出力をうる装置	多	賀工	場	渡	井	三・チ	5	"	
							伊亚	藤	誠 二			
	055151				КЗ Т	4.8	*	di	停 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	2. 4.	,,	,
"	257471	永 久 磁 石	看 1 ~ 茶 直		塚上	、 场	称木	Щ	見ヲ	E	"	,
"	25/4/7	離 电 奋 凹	哈 农 但		冰上	. 50	林田	村	見ノ	É I	11	
						_				(5)	- চ _ 1	45)
										(0	(貝へ)	DC \

534

回州回州回常許ど新案回州回州回

最 近 登 録 さ れ た 日 立 製 作 所 の 特 許 お よ び 実 用 新 案 (その2)

(前頁より続く)

種 別	登銀番号	名称	工場別	氏 名	登録年月日
特 許	257308	蛍 光 放 電 管 点 灯 装 置	中央研究所	中村・神之助	34. 12. 3
<i>11</i> 実用新案 11	257310 504108 504111	接 触 変 流 機 保 護 装 置 竪 軸 発 電 機 の 軸 受 箱 原子 炉 燃 料 棒 冷 却 調 節 装 置	日立研究所 日立工場 日立工場	三 橋 登 香 本 英 明 長 尾 善右衛門 松 本 政 吉	34. 12. 15 "
11 11	504120 504126	電気車の接地用刷子装置 半導体整流器単位体	日立工場日立工場	吉 柳 清 美 佐 々 木 義 雄 人 見 男 胤	// //
"	504134	押 ボ タ ン 開 閉 器	日立工場		"
11 11 11	504140 504152 504153	交流発電機の電圧調整装置 交流発電機の自動励磁調整装置 接触変流機開閉部潤滑装置	日 立 工 場 日 立 工 場 日 立 工 場	m n n n 高 尾 滋 今 尾 隆 甲 賀 正 三	// // //
11 11	504157 504161	誘 導 同 期 電 動 機 相 差 角 調 整 装 置 手動開閉器と電磁接触器との電気的鎖錠装置	日立工場日立工場	佐藤 弘 桜井泰男 松村 睦夫 田 武士	- 11
11 11	504114 504115	水 銀 整 流 器 運 転 装 置 複数機器の偏個運転を防止する切替開閉装置	国 分 工 場 国 分 工 場	田 所 氏 天 池 田 正一郎 森 井 進	// //
11 11 11	504116 504119 504121	水 銀 整 流 器 運 転 装 置 故 障 選 択 遠 方 対 応 装 置 断 路 器 固 定 接 触 装 置	国 分 工 場 国 分 工 場 国 分 工 場	入 百 透 池 田 正一郎 池 田 正一郎 加 藤 清 羽 藤 昭一郎	17 17 17
" " "	504130 504131 504136	操作開閉器の単位スイッチ 遮断器油槽昇降装置 配電箱内相間隔壁引出装置	国 分 工 場 国 分 工 場 国 分 工 場	宮 崎 改 金 井 好 延 岸 恒 夫 中 川 幸太郎 野 沢 忠	11 11 11
"	504137	蓄 電 器 油 量 調 整 装 置	国分工場	滑川義三 斎藤亮二	"
1) 1/	504138 504139	油入蓄電器フィーデングタンク支持装置 油入蓄電器器端子引出装置	国分工場	宮 沢 寿 郎 滑 川 清 斉 藤 二	"
'' '' ''	504148 504163 504123 504124	 	国分工場 国分工場 水戸工場 水戸工場	山 中 敬 二 山 中 敬 二 斎 藤 亮 二 斎 藤 亮 二 安 藤 卓 郎 河 井 貞 治 立 川 昭 三	" " 34. 12. 15 "
11 11	504159 504098	自 動 操 炉 装 置 ロータリバルブ操作装置	笠 戸 工 場 亀 有 工 場	山 崎 佐 喜 之 松 本 憲 治 木 暮 健 三 郎 山 内 章 正	'' ''
11	504112	流体接手のオイルシール検定装置	亀有工場	近藤澄雄 木暮健三郎	"
"	504129	手動ゆるめ装置付油圧自動ブレーキを有する油 圧制水弁	亀有工場	木 暮 健 三 郎	"
11 17	504147 504151	流体変速機の制御装置 単索式バケット付クレーンにおけるバケットの 開口操作装置	亀 有 工 場 亀 有 工 場	四 戶 早 止 渡 部 富 治 安 河内 春 雄 松 區 五 込	11 11
"	504155	コンベヤの中間駆動装置	亀有工場	青木 勝成 武 堅	"
"	504160	流 体 変 速 機	亀有工場	寺本 仁 史	34. 12. 5
"	504162 504113		●有工場	富田忠二	"
1/	504128	フライアッシュ取出装置	川崎工場		"
"	504149	自 動 伸 張 覆	川崎工場	松本源次郎 左 野利 土	"
11	504150	往復動堅形二気筒酸素圧縮機の水切り装置	川崎工場	重 松 久 大 谷 嚴	"
"	504099	磁 気 式 酸 素 計	多賀工場	岩 淵 芳 雄	"
"	504100	多点警報 提置	多賀工場	河 井 陽 一	"
" "	504106 504107	水 位 テ レ メ ー タ ー 送 量 装 置 受 量 積 算 方 式 テ レ メ ー タ ー	多 賀 工 場 多 賀 工 場	小沢重樹小沢重樹	11 11
77	504109	ホイスト田川 ミットフィーイ	发 加 〒 周	鈴木 → 夫 ※ 茈	

— 8 —