送電線の衝撃波コロナ特性

Impulse Corona Characteristics on Transmission Lines

沼 尻 文 哉* Fumiya Numajiri

送電線の耐雷設計に関しては多年にわたって研究されているが,まだまだ未解決の問題が多く残されている。 特に高電圧衝撃波のコロナ現象については,あまり研究されていない。このような事情から,モデル的に細線 の衝撃波コロナの基礎的な性質を調べて送電線の雷サージのコロナ現象を解析することを試みた。

衝撃波印加時のコロナ損失,コロナ半径についての結果はさらに多くのデータの集積をまたなければならないけれども,日立電線株式会社日高工場 400 kV 級試験送電線で行った進行波試験の実測結果を解析する上に 役立てることができた。

— 45 —

今後、実際の送電導体について研究することが必要である。

1. 緒 言

最近の電力需要増加ははなはだしく,大容量の発電所が各所に建 設されている。送電線の送電容量も系統容量に伴って当然増加しな ければならないので送電電圧は上昇の一歩をたどってきた。

超高圧送電の必要性は、大電力の経済的長距離輸送と系統連繋に

よる経済的運用が主因であったが,都市近傍でも用地難によって多 くのルートが取れないので外輪線が急速に超高圧化されている。

送電線の事故は依然として雷サージによるせん 絡事故が最も多く,超高圧送電線では事故を起すと大電力の送電欠除となって系統 に致命的影響を与える。したがって十分な耐雷設計を行わなければ ならない。

最近,超高圧送電線で原因不明の雷害事故がひん発し種々問題と なっているが,送電線雷撃時には数千 kVの高電圧になってコロナ 現象を伴い複雑な現象になる。このため未知の問題が多く残されて きている。

高電圧コロナ現象解析のために種々の研究を計画しているが、そ の一つとして小形同心円筒によって細線の衝撃波コロナの様相を調 べた⁽¹⁾⁽²⁾。単導体および複導体の衝撃波コロナ損と導体径のコロナ によるみかけ上の増加がその主体であるが、この解析によって、日高 工場超高圧研究室内で行った「超高圧衝撃電圧試験」のうち、400 kV 級試験送電線における進行波試験の結果⁽³⁾がかなりよく説明できる と考えている。

2. 衝撃波コロナ損失

送電線における高電圧衝撃波の進行特性特に波頭変歪はコロナ損 と結びつけて説明できることは Skilling-Dykes の理論⁽⁴⁾ としてよ く知られているが, 雷サージのコロナ損失について交流コロナに対 する Peek の2 乗法則が成り立つとして導いているところに問題が ある。

衝撃波コロナ損については二,三報告⁽⁵⁾⁽⁶⁾もあるがその特性はま だ詳細に求められていない。

2.1 衝撃波コロナ損測定回路

であるから, (1)式は

もし、電荷と電圧の関係をリサージュ図形に描ければ(2)式によっ てその囲む面積はコロナ損になる。コロナの発生がなければ一本の 直線となって面積は零である。

第1図はコロナ損測定回路であるが,同心円筒電極は直径 50 cm, 有効電極長 132 cm,両端に 10 cm の保護電極がある。コロナ損測定 に用いた導線は 1.2~5.0 mm Ø の銅単線の単導体および複導体であ る。

外側の円筒電極を無損失コンデンサ C_e で接地すると,コンデンサ 両端の電圧 e_e は中心導線と外部円筒電極間の実効静電容量とこの C_e とで分圧された値である。導線一円筒電極間に蓄積された電荷 q は $q = e_e C_e$ の関係から求められる。

始めは蓄積電荷は印加電圧に比例し、そのこう配は中心導線一外 部円筒間の静電容量できまるが、コロナが発生すればさらにコロナ による放出電荷が蓄積される。導線の印加電圧 e に対してコンデン サ端子電圧 ec が十分小さければ、第1図の測定による q と e との関 係は導線コロナ電荷の特性を与えることになる。

2.2 衝撃波コロナ電荷-電圧曲線(*q*-*e*曲線)⁽⁵⁾⁽⁶⁾

第1図で印加衝撃波が導線のコロナ開始電圧以下ならば、Ccの蓄 積電荷は電圧に比例する。コロナ開始電圧以上になると、第2図の

ようにコロナ開始電圧をこえる部分でコロナによる放出電荷が加わ る。波頭長 10 µs まで, 波尾長 40~100 µs の波ではコロナは波頭お よび波高値近傍でのみ発生し, 波尾では出ない。しかし, 長波尾長 の波では波尾部分でも相当コロナが出ることが報告されている⁽⁷⁾。 コロナによる放出電荷は印加電圧が零になっても残留電荷 qr とし て残る。 この関係を電圧, 電荷のリサージュ図形(q-e 曲線)にすればコロ 昭和36年6月

電線ケーブル特集号 第6集

日立評論 別冊第43号

ナ電荷のヒステリシス特性が得られる。第3図は q-e 図形の一例 である。コロナ開始電圧までは電極の幾何学的配置による原容量直 線をたどり正負極性とも同一傾斜であるが,コロナが出ると異なっ た図形をたどる。コロナ開始電圧をこえる電圧値とコロナ電荷量の 間にはばらつきはあるが定まった関係のあることがわかる。電圧下 降部分では波高値付近でコロナ放出があるのみで波尾ではコロナが 出ないので原容量直線と平行して電荷量が減少する。しかし,拡散 再結合などによって電荷が消滅するため電荷の減少は少し早い。第 3図 q 軸の切片は第2 図の qr に相当するものである。

一方,商用周波電圧(50 c/s)の場合には単極性衝撃波とは本質的 に異なり第4図のような q-e曲線が得られる。交流の場合には前 半波における逆極性のコロナ放出残留電荷がコロナ放電をうながす 結果,大きなヒステリシス・ループを描くのであろう。

2.3 衝撃波コロナ損のばらつき

第3図(a)に示した *q*-*e* 曲線は小形同心円筒における 2.3 mm *φ* 銅単線単導体の *q*-*e* 曲線であるが, 囲む面積から衝撃波コロナ損を 求めると**第5**図になる。

コロナ損にはかなりのばらつきがあり、コロナ損の平均値 x と標準偏差σは第1表になって分散の幅は負極性のほうがずっと狭い。 平均値で考えれば、正極性の衝撃波コロナ損は負極性の約50%増で ある。第5図に±3σの範囲を点線および鎖線で示した。複導体にし

衝撃コロナ損 (×10 ⁻³ J)	ΤĒ	波	負	波
印加電圧 (kV)	平均值 (x)	偏 差 (o)	平均值(x)	偏 差(o)
53.4	19.0	(2.47)	11.7	(1.49)
80.2	59.3	(6.49)	41.4	(1.66)
106.9	129.6	(9.30)	79.4	(4.48)

第1表 衝撃波コロナ損の変動

第3図 衝撃波コロナ電荷一電圧特性

----- 46 -----

電 送 線

性 特 衝 擊 波 \mathcal{O} ナ コ \square

---- 47 -----

てもばらつきは単導体とほとんど同じである。

めた。

径との関係である。極性効果が見られるようであるがばらつきがあ って明確ではない。第1図のような回路でコロナ開始電圧を求める のは精度が悪く正確な値が得られないが、一応の傾向は見つけられ るであろう。 Peek の同心円筒における交流に対するコロナ開始導 体表面電位傾度の実験式は(8)

ここで、 $r = 導体半径(cm), \delta = 相対空気密度$

第6図の実線は $\delta = 1.03$ の場合の(3)式の計算値であるが1.2mm ϕ の場合を除いて大体一致すると考えてよいであろう。すなわち、衝 撃電圧についても交流あるいは直流に対する Peek の式が成り立つ とみてよいと思われる。これから, コロナ開始電圧は同心円筒にお いて

となる。**D**=外部円筒半径(cm)

複導体については導体数とコロナ開始導体表面最大電位傾度との

2.5 単導体の衝撃波コロナ損実験式

交流印加時のコロナ損失については Peek の実験式があるがコロ ナ開始電圧付近ではよく一致せず、コロナ開始電圧の数倍までは Ryan および Holm の表示式がよいといわれている⁽⁹⁾。衝撃波コロ ナ損についても実験した範囲内では Peek の2 乗法則はみられなか った。

そこで、コロナ損の電圧特性を $\frac{e}{e_0} \left(\frac{e}{e_0} - 1 \right)$ に対して対数グラフ に描けばほぼ直線的になって Ryan および Holm の表示式に一致

関係は第7図になって、コロナ開始電位傾度は素導体半径でほぼ決 定することがわかる。導体数が増すとコロナ開始電位傾度がわずか に高くなる傾向もみられる。コロナ開始電圧は単導体と同様にして

となる。(記号は後述)

する。高電圧では2乗特性に近づく。 第8図は 1.2~5.0 mm Ø の単導体の衝撃波コロナ損を示すが,各 線はほぼ平行である。直線の傾斜は厳密に1ではなくばらつきがあ るが、測定時の誤差を考えれば衝撃波コロナ損は e(e-e₀)に比例

すると考えられる。 導体径が大きくなると第8図の直線は上方に平行移動する。縦軸

の切片(横軸1の点)は第9図になって直線になり、そのこう配は2

昭和36年6月

電線ケーブル特集号 第6集

日立評論 別冊第43号

である。したがって, 直径あるいは半径の2乗に比例してコロナ損

は増加する。

単導体の衝撃波コロナ損の実験式は

ここで、P=1 cm あたりの衝撃波コロナ損(J)、r=導体半径(cm)、 e=印加衝撃電圧(kV)、 $e_0=コロナ開始電圧(kV)$ k_{\pm} は係数で負波 および正波に対して

となる。(6)式は導体の断面積に比例することを示しているが, コ ロナ開始電圧について(4)式の関係を代入すれば

となる。

2.6 複導体の衝撃波コロナ損

一方,複導体の衝撃波コロナ損についても単導体と同一の電圧特性が求められ、1.2 mmø, 2.3 mmø についてそれぞれ 第10図(a)、
(b)が得られた。複導体間隔は 第10図 中に示してあるが、間隔が変ってもコロナ損に大幅な変化はない。

複導体間隔によって導体表面最大電位傾度は変化するが,一般に n 導体の導体表面最大電位傾度 G_n は

$$G_{n} = \frac{1 + (n-1)r/C}{nr \log_{e} \frac{D}{n/nr C^{n-1}}} \cdot e \left[\frac{kV_{max}}{cm}\right] \dots (9)$$

大電位傾度に対する関係を示していることになる。

になる。

----- 48 ------

複導体のコロナ損係数も単導体と同様に考え,切片(横軸1の点) と導体数の関係を求めれば第11図になる。直線関係が成立つこと は非常に興味深い。導体数をnとすれば

ただし、 $C = a/2 \sin \frac{\pi}{n}$, a = 複導体間隔(cm) D = 同心円筒半径(cm), n = 複導体数したがって、コロナ開始電位傾度 $G_{no} \ge G_n \ge O$ 比は $\frac{G_n}{G_{no}} = \frac{e}{e_0}$ (10)

となって電圧に対する比と一致し, 第10図(a), (b)は導体表面最

となる。 ν は導体径および衝撃波極性によって定まる指数である が、これだけのデータからは明らかにすることはできず、さらに太 いサイズの導線について研究することが必要である。なお、一例と して **第11** 図 で ν の値を求めると、 1.2 mm ϕ 複導体では $\nu_{+}=1.82$ 、 $\nu_{-}=1.15$ 2.3 mm ϕ 複導体では $\nu_{+}=1.13$ 、 $\nu_{-}=0.79$

第12 図 コロナ発生時の静電容量変化

3. 衝撃波コロナ半径

コロナが発生すればコロナ損失を起すが、一方、コロナによって 導体近傍の大気が電離し導電性を帯びて, みかけ上導体径が増加し たような現象を呈する。コロナによって太くなったみかけ上の導体 径をコロナ半径と呼ぶが, 導体径が増加すれば送電線のサージ・イ ンピーダンス、他線への結合率などが変化する。巨視的にはコロナ の発生は導体径の増加として作用する。

3.1 単導体のコロナ半径

導体とまったく同一になって

$$C_n \!=\! 2 \ \pi \ arepsilon_0 / \! \log_{\mathrm{e}} rac{D}{r_e}$$

となる。等価導体径 r_e は

$$r_e = \sqrt[n]{nrC^{n-1}}, \quad C = a/2 \sin \frac{\pi}{n}$$
.....(16)

ここで, n=複導体数, r=素導体半径, α=複導体間隔 いま, コロナによって素導体半径がみかけ上r'(=anr)になれば, そのときの等価導体径 re' は

単導体の円筒間静電容量 Cは導体半径をrとすれば

ただし、 ε_0 =誘電率、D=円筒半径

コロナが発生してみかけ上導体半径が r' になればコロナ発生後 の静電容量 C' は

$${\it C'} = 2 \; \pi \; arepsilon_0 / {
m loge} \; rac{D}{{\it r'}}$$

したがって

$$\frac{C'}{C} = \frac{\log D/r}{\log D/r'}.$$
(13)

 $r'/r = \alpha$ として α を元の導体半径とコロナ半径との比とすれば

となる。 q-e曲線 (第3図) において, コロナが発生しないときの 傾斜、あるいはコロナ開始までの電圧波頭部分の傾斜はコロナが出 ないときの原容量Cを示し,原点と電圧波高値点を結んだ直線の傾 斜はコロナ発生静電容量 C' を示す。傾斜の角度をそれぞれ θ, θ' と すれば

となって、 θ 、 θ' を測定すれば α が求められる。

第12図はq-e曲線から求めたC'/Cの電圧特性である。負波は 傾向が一定しないので判断に苦しむが、一応導体径には関係しない と考えてよいであろう。電圧が増加しても C'/C はわずかしか増加 しない。これは負コロナの伸びがほとんど一定であることを示すも のである。正波印加では負波印加よりもはるかに大きな C'/C にな

$$\mathbf{r}_{e'} = \mathbf{r}_{e} \cdot \frac{n}{\sqrt[n]{\alpha_n}}$$
(17)

したがって、コロナ発生時の静電容量 C_n' と原容量 C_n との比は

$$\frac{C_{n'}}{C_{n}} = \frac{\log D/r_{e}}{\log D/r_{e} \sqrt[n]{\alpha_{n}}} \qquad (18)$$

ゆえに

複導体の場合の C_n'/C_n は第13図になる。複導体の場合にも $C_n'/$ C_n の傾向は単導体の傾向と非常によく似ている。負波の C_n'/C_n は 導体数に関係なくほとんど同じになり、 電圧上昇とともにわずかに 大きくなる傾向は単導体とまったく同一である。正波は負波よりも 大きな Cn'/Cn をもち, 電圧とともに急激に上昇する。しかし, あ る幅はあるが導体数に関しては同一の Cn'/Cn になると考えて十分 であろう。

3.3 コロナ容量比

麻生氏によれば(6), コロナ開始後の導線の容量変化が直線的であ れば、コロナ発生以前の容量 C とコロナ発生後のコロナ電荷直線 の傾斜 C_k (コロナによる静電容量の増加を ΔC とすれば $C_k = C +$ (AC)との比 C_k/C が進行波の波頭変歪に重要な意味をもつといわれ る。この Ck/C がコロナ容量比と呼ばれるもので, 波頭変歪の一つ の目安である。 q-e 曲線よりこのコロナ容量比を求めると単導体 および複導体について第2表のようになって導体の種類にはあまり 関係しない。コロナ容量比は

正極性 $C_{k_+}/C\simeq 2.0\sim 2.5$

負極性 $C_{k-}/C\simeq 1.3\sim 1.5$ と考えられる。

るし、導体径によって正コロナの伸びは異なってくる。導体径が大 きいほど正波の C'/C は大きく, コロナの伸びは大きくなることを 示している。しかし、高電圧になれば飽和して C'/C が一定になる 傾向をもっているようである。 コロナ半径は第12図の値から(14)式を用いて計算できる。 3.2 複導体のコロナ半径 複導体の場合は複導体の等価導体径 re を考えれば静電容量は単

第2表 コロナ容量比 (a)単導体 (b)複導体							
導体径(mm)	C_{k^+}/C	C_{k-C}	導体数	C_{k^+}/C	C_{k-}/C		
1.2	2.16	1.34	$\ 2.3\mathrm{mm}\phi\times1 $	1.79	1.30		
2.3	1.79	1.30	$2.3 \mathrm{mm}\phi \times 2$	2.51	1.31		
3.2	2.00	1.37	$2.3 \mathrm{mm}\phi \times 3$	2.51	1.28		
5.0	2.68	1.45	$2.3 \mathrm{mm}\phi \times 4$	2.48	1.42		

----- 50 ------

電圧発生装置の内部抵抗 660Ω, 1,320Ω の 2 通りで印加したが,線 路のサージ・インピーダンスのために 1,000 kV 前後までしか発生 しない。

4.1 高電圧衝撃波の波頭変歪

コロナによる進行波の減衰を理論的に導いたのは Skilling, Dykes 両氏⁽⁴⁾(1937年)で, Sunde 氏, Bewley 氏⁽¹⁰⁾によって補足説明され ているが、コロナ損が(6)式あるいは(8)式で表わされるときのコ ロナ発生時の進行波の伝ばん速度vは

ただし, $k' = k_{\pm}r^2/e_0^2$, $C\left(=2\pi\varepsilon_0/\log_e \frac{D}{r}\right)$: 導体の静電容量(1) 相のみの場合はD=2h), v_0 は減衰もコロナもないときの伝ばん速 度で光速に等しい。

これから電圧
eにおける遅延時間
ては

Cの波形である。著しい波頭変歪がみられる。2r = 1.85(cm), D =2×10²(cm), を代入すれば、(4)、(6)、(21)の各式より

正極性
$$\tau_{+} = \frac{x}{v_{0}} \times 0.738 \left(1 - \frac{e_{0}}{2e} \right)$$

負極性 $\tau_{-} = \frac{x}{v_{0}} \times 0.491 \left(1 - \frac{e_{0}}{2e} \right)$ (22)
 $e \ge e_{0}, \ e_{0} = 410 \text{ kV}$

となる。x=340m として計算すれば第15図中の点線のようであっ て,正極性では非常によく一致する。負極性では一致しないが,変 歪の様相が異なるので実測波形自体を検討する必要があろう。コロ ナ開始電圧の計算値 410 kV よりもずっと低い電圧からコロナが出 ているのはより線のためで、より線係数 0.73 を考えると 300 kV と なって実際と一致する。なお、コロナが発達した状態ではより線で も円滑導体と考えたほうがよい。負波では正波の67%程度の変歪に

となる。 x/v_0 はx離れた地点に光速の波が伝ばんする時間であり、 $\tau/(x/v_0)$ はコロナ発生時の(相対的な)遅延量を示すことになる。k'/Cは線種や線の配置によって異なる量であるので除外して考え, $\tau/(x/v_0)$ と e/e_0 の関係を求めると 第14 図 になる。実際の遅延量 $\tau/(x/v_0)$ は第14図の読みに k'/Cを乗じたものである。 第15図は400kV級試験送電線で実測した印加点Aと340m地点 なる。 4.2 コロナによる結合率の増加 2本の導体が平行に架線されている場合,第1の導体に印加した 電圧によって第2の導体に誘導電圧を発生する。この印加電圧に対 する誘導電圧の比を結合率と呼んでいる。 同一地上高の2線があって導体1にサージ電圧 e1 が印加された とすると、印加点において導体2に誘導する電圧 e2 との比は(11)

 $k_{12} = \frac{e_2}{e_1} = \frac{\log \sqrt{1 + \left(\frac{2h}{D}\right)}}$ (結合率)

ここで、h = 両相の地上高、 $r_1 = 導体1の半径$

波が伝ばんしたのちは結合率は伝ばん距離, 波の相対的大きさに 関係する。コロナによって導体径が r1'になると結合率の比は

となる。この比は(13)式の C'/C に等しい。

第16図は400kV 試験送電線で実測した A 点における結合率の

5. 結 言

小形同心円筒電極によって細線の衝専波コロナの性質を調べ

単導体および複導体の衝撃波コロナ損 (1)

単導体および複導体の衝撃波コロナ半径 (2)

(3)コロナ容量比

についてかなり明らかにできたが、さらに 400 kV 級試験送電線に おける波頭変歪,結合率の実測結果の解析に役立てることができ た。しかし、モデル電極で用いた単線のコロナ放電の様相がより線 のコロナ放電と大幅に異なる懸念があるので、今後、実用導体を用 いて解析することがぜひとも必要であろう。特に, 複導体送電線に ついて十分に研究して行きたい。

終りに臨み懇篤な援助を賜った電線工場研究部久本部長、永野宏 郎氏、実験の労にあたられた秋山博君に心から深謝する。なお、試 験送電線による実測結果は耐雷設計基準委員会との協同実験の一部 で電力中央研究所川合幹雄氏のご指導を受けたことを厚くお礼申上 げる。

献 考 文 参

- 沼尻, 永野: 昭34東京支部大会, 213 (昭 34-11) (1)
- (2)沼尻, 永野: 昭35連大, 913 (昭 35-7)
- 耐雷委員会,日立電線株式会社: 耐雷設計基準委員会送電線 (3)分科会資料 L-141 (昭 36-2)

電圧特性である。負波の場合については第12図より計算すれば実 線のようになって実測結果とほぼ一致する。正波に対する結合率も 負波をやや上回る程度であるが,第12図の正波では大きくなるの で説明できない。

この原因は単線とより線のコロナの伸び方が本質的に異なることに あると考えられる。実用のより線についてのコロナ特性を十分研究 することが必要であろう。

- (4) H. H. Skilling, P. de K. Dykes: E. E., 56, 850 (1937)
- (5) 麻生: 電学誌, 77, 1467-1474 (昭 32-11)
- (6) C. F. Wagner, B. L. Lloyd: A. I. E. E. Trans., 74, III, 858-872 (1955)
- (7) 麻生, 室岡: 昭34連大, 576 (昭 34-4)
- (8) 電気学会大学講座: 放電現象, 70(昭26 電気学会)
- (9) 電気学会大学講座: 放電現象, 67 (昭 26 電気学会)
- (10) L. Bewley: Traveling Waves on Transmission Systems, 35-38 (1951 John Wiley & Sons, Inc.)
- (11) 法貴, 三田: 絶縁と閃絡防止, 146-147 (昭 26 オーム社)

山 正 夫•宮 沢 定 雄 杉

ポ エチレン絶縁電力ケーブル IJ

ポリエチレンは絶縁耐力および体積固有抵抗が高く,誘電正接, 誘電率ともに小さく,しかも吸湿による絶縁抵抗の低下の心配がな いなど,ケーブル絶縁体として数多くの長所を有するが,その反面 熱可塑性であるため,ある程度以上に加熱されると軟化する性質が ある。このため短絡事故時の導体の急激な温度上昇によって、ケー ブル線心相互間の絶縁破壊を招くおそれがあった。

この考案はこのような点にかんがみ、導体の周上に、表面を金属 蒸着化した耐熱プラスチックテープ巻き層,および半導電性被層を

設けて、ポリエチレン絶縁体を被覆したものである。このようにす れば,短絡事故時に大電流が流れ導体温度が瞬間的に上昇しても, 中間のテープ巻き層および半導電性被層がポリエチレン絶縁体への 熱伝導を緩和する役割を果すから,ポリエチレン絶縁体の溶融変形 による事故は未然に阻止できる。なおこのテープ巻き層、および半 導電性被層は,導体と絶縁体間に生じやすい空気薄層のオゾン発生 防止にも効果がある。 (斎 藤)

第1図 ポリエチレン絶縁電力ケーブル