天井つり下げ形セシウム137治療装置

A Cesium 137 Teletherapy Unit

楠	本	Ŧī.	良珍*	山	口	博	司**	馬	場	滕	彦**
Gorō Kusumoto			Hiroshi Yamaguchi			Ka	ntsuhik	to Bal)a		

内 容 梗 概

従来癌および悪性腫瘍の治療には、線源として放射性同位元素コバルト60を用いた装置があり、国内国外において盛んに使用されている。しかしコバルト60は半減期が5.3年で短いことおよび遮へいが厚く機構が大となり、治療操作が自由にできない。これに対しセシウム137は半減期か33年であることおよび遮へいが半分でよいため、これを用いた治療装置は小形軽量になり治療操作が容易で、短、中距離治療装置として非常にすぐれている。

われわれは種々検討の結果従来のこの種治療装置の概念と異なり、セシウム137の特性を十分に生かした斬 新な着想による短、中距離治療装置を完成したので、その機構および線量分布の測定結果を報告する。

1. 緒 言

近年癌および悪性腫瘍に対する放射線治療は著しく進歩した。特 に r 線源として人工放射性同位元素コバルト 60(6℃Co)の利用は広 く普及しており、日立製作所においてもすでに幾多の装置納入の実 績を有している。

これに対し核分裂生成物セシウム 137(¹³⁷Cs) の γ 線源としての利用は 1950 年ころに始まり⁽¹⁾⁽²⁾, アメリカ ORNL, カナダ AECL, イギリス RCC における ¹³⁷Cs 大線源の開発が進むに従い, 最近では 各国において ¹³⁷Cs 治療装置の完成が報告され^{(3)~(12)}, その有利性が 明らかになってきた。

γ線源としての¹³⁷Csを⁶⁰Coに比較すると,次のような特長を有 している。すなわち半減期については、⁶⁰Coの5.3年に比べて¹³⁷Cs は約33年という長いものである。 さらにγ線エネルギーについて は⁶⁰Coの約1.25 MeV に対して、¹³⁷Cs では 0.662 MeV のγ線を放 出する。したがって半価層が薄くなるので線源容器の遮へいが少な くて済み、小形軽量化を図ることができる。これは治療操作がしや すく、短、中距離照射には便利なことである。

ただし⁶⁰Coほど大きな比較放射能の線源をうることがむずかしい という問題があり、このため同一の線量をうるには⁶⁰Coよりも大き い体積の線源が必要である。

しかし,長期にわたって線源の補充,または詰め換えをする必要 がなく,装置および建物の遮へいもより簡単であるため,設備費お よび維推費の面で非常に経済的であり,⁶⁰Co治療装置の一部に代っ て短,中距離照射装置としてわが国においても今後ますます普及す る可能性が大きいと考えられる。

このような現状にあって、われわれは従来のこの種放射線治療装置の構成における概念とまったく異にした斬新な着想によって、 ¹³⁷Csのもつ諸特性を十分に生かした短、中距離照射用¹³⁷Cs治療装置の設計製作を試みた。

すなわち,装置は線源容器を天井からつり下げ,照射時線源は線 源容器より照射ヘッドに押し出し使用する構造としたので,治療操 作は非常に容易となっている。特に短,中距離照射ではあらゆる場 合の照射に便利である。

2. ¹³⁷Cs 線源の諸特性

2.1 放射性同位元素 ¹³⁷Cs の特性

放射性同位元素 ⁶⁰Co が安定同位元素 ⁵⁹Co の中性子照射による放射化によって造られるのに対して, ¹³⁷Cs は ²³⁵U などの核分裂生成物の中から分離精製される⁽¹³⁾。

金属 Cs は非常に反応しやすいため,通常種々の無機塩の形で使われるが,最も一般的に使われるものは Cs₂SO₄ および CsCl である⁽⁹⁾。このため線源の比放射能はおのずと限定され, Cs₂SO₄で23c/g, CsCl で 22 c/g という値である。

これは 60 Co が現在使用されているもので 50~180 c/g であるのに 比べて非常に低い値であり、後述のように r線エネルギーも低いの で同一線量をうるためには 60 Coよりも体積が大きくなる。したがっ て 137 Cs では半影と自己吸収の問題は無視することができない。

¹³⁷Cs の壊変形式は 第1図 に示すとおりでβ線およびγ線を放出 して,同重核をもつ¹³⁷Cs に変換する。すなわち,不安定核¹³⁷Cs の 8% は直接β⁻が崩壊をして安定核¹³⁷Ba になる。次に,¹³⁷Cs の 92%は最大エネルギーが 0.51 MeV のβ⁻崩壊をして異性核¹³⁷Cs に 変換し,さらに半減期 2.6分で残りのエネルギー 0.662MeV のγ線を 放出して安定核¹³⁷Ba に遷移する。*¹³⁷Cs の主γ線エネルギー 0.662 MeV を⁶⁰Co の 1.17 MeV, 1.35 MeV に比較すると約 ½ の値であ り,これは半価層でも同程度の比率差をもたらすので¹³⁷Cs のほう が遮へいが薄くてよいことになる。 次に¹³⁷Cs の線量率は 1 mc の点線源から 1 cm の距離で 3.26 r/h である。⁶⁰Co の場合は同様の条件で 13.5 r/h であるから約 ¼ の値

以下試作研究を行ない,得られた理工学的諸資料および試作した ¹³⁷Cs・2000 c 治療装置(TS-200 CA) について結果を報告する。

* 放射線総合医学研究所 ** 日立製作所亀戸工場 天井つり下げ形セシウム 137 治療装置 699

第1表 ⁶⁰Co と ¹³⁷Cs の 比 較

種 類	⁶⁰ Co	137Cs
項 日		63
原 子 番 号	27	55
質 量 数	60	137
	β^- 0.306 MeV	β^- 0.523 MeV
放射線の種類	γ 1.3316 MeV	β- 1.17 MeV
	γ 1.1715 MeV	$\gamma = 0.6616 \text{ MeV}$
半 減 期	5.27年	33 年
製法	⁵⁹ Co (n•r) ⁶⁰ Co	Fission
放 射 線 量 率	1.28 rhm	0.326 rhm
半 価 層	1.04 cmPb	0.53 cmPb

である。実際の線源では線源自身の吸収、カプセルの吸収などのた

遮へい体の厚さの計算には、一般に次式が用いられる。

(1) 放射線が平行線束の場合

 $I = B \cdot I_0 \cdot e^{-\mu x}$(3) または

め線量率は前記の理論値より小さい値となる。線源の自己吸収による実効出力線量率は Dixon (1952) によって次の式が与えられている⁽⁹⁾。

$$\frac{I}{I_0} = \frac{1 - e^{-\mu L}}{\mu L}.....(1)$$

- ここで L: 線源の出力軸方向長さ (cm)
 - μ: 線源の自己吸収係数 (cm⁻¹)
 - *I*: 吸収後の線量率 (r/h)
 - I_0 : 自己吸収前の線量率 (r/h)

 μ の値は Brucer によれば 0.23 cm⁻¹ (3.18 cm 径線源において), Eastwood らの測定によれば 0.256 cm⁻¹ (2.7 cm 径線源において)⁽⁹⁾ という値である。(1)式を図表化すると**第**2 図のようになる。しか し, 0.662 MeV の γ 線に加えて,線源内の散乱, β 線の制動輻射な どによって線量計に表われる実際の線量は若干多くなり,これらの 付加的な影響は 0.3 MeV 近くにエネルギー分布のピークをもつ連続 スペクトルをなす。

以上¹³⁷Csの特性を⁶⁹Coと比較しつつ検討したが、これをまとめると第1表のようになる。

なお、本試作装置において用いた線源は、ORNL製¹³⁷Cs医療用 線源でステンレス製二重カプセル内に粉末状CsClを密封してある。 寸法および仕様は次のとおりである。

^{137}C	's 線	源の	量	2,000 c
線	源	4.	法	$36.3 \mathrm{mm}\phi imes 30 \mathrm{mm}$
カフ	プセル	外径。	寸法	$38.3\mathrm{mm}\phi imes40\mathrm{mm}$
比	放	射	能	$22 \mathrm{c/s}$
密			度	$3.3 g/cm^3$

2.2 ¹³⁷Csの遮へい

ここで x: 遮へい体の厚さ (cm)

- μ: 遮へい体の線吸収係数 (cm⁻¹)
- I₀: 遮へい体の線源側表面における線量率 (r/h)
- *I*: 遮へい体の後側の線量率 (r/h)
- (2) 点状線源が近接した遮へい体で囲まれている場合

または

ただし A: 点状線源から遮へい体の線源側表面までの距離(cm)

B: 再生係数 (Build up factor)

再生係数Bは通常,減層厚(μx)で表わされる遮へい厚との関係で示される。 ¹³⁷Cs γ 線エネルギーにおける種々の物質の再生係数を第3図に示す。

3. ¹³⁷Cs 治療装置に適した方式

3.1 装置の諸方式の比較

試作装置の設計にあたってはまずその照射方式, 支持方式, 照射 野限定の絞り方式などに関して数次の検討を重ねた。

3.1.1 γ 線装置の照射方式

----- 23 -----

γ線の照射方式に関しては第4図に示すような種々の方式が考 えられ,それぞれの特長に従って実用化されている。

第4図a, b, cは線源固定式でシャッタによってビームを放

R: 線源中心から遮へい体までの距離 (m)

射または遮断する。aは引出し式シャッタb, cは回転シャッタ の図である。線源固定式では容器は小形にできるが, 線源と放射 ロの間にシャッタが介在するので, 線源-皮膚間距離(以下 S. S. D と呼ぶ)を小さくとることは不可能で, 短距離照射用には向かな い。 第4図dは線源回転式で回転シャッタの一部に線源を取り付け て照射時は線源を回転して放射口側に移動させ, 格納時はシャッ

れる。

(1) 可変絞り機構による絞り方式

タがビームを遮断する。本方式ではS.S.Dはかなり小さくとれる が容器が大きくなる欠点がある。

第4図 e, f は線源押し出し式で,線源容器を線源格納容器 と照射ヘッドに分離して,照射時には線源を格納容器から照射ヘ ッドに押し出して照射を行なわしめるものである。照射ヘッドは 利用線束の外を必要な遮へい(普通患者の被爆線量を利用線量の 1/100 以下におとす)をするものであるから小形化することがで きて,治療操作が容易になりS.S.Dは最も小さくとることが可能 である。e 図は移動路を容器内で90度くらいの角度で二回屈曲さ せて格納中の源からの一次線および二次線を遮へいしシャッタを 省略した方法で,f 図は直線状移動路をもち,容器内に回転シャ ッタをもって格納中にビームが移動路のほうに出るのを遮へすい るようにしたものである。

3.1.2 Y 線装置の支持方式

γ線装置の支持方式は第5図のように大別して, 据置形と天井

(i) 平行 絞 り

絞り片がビームの中心軸に垂直に移動するもので機構が簡単で あるが,ビーム側面と絞り片側面がある角度をなすため線源の大 きさによる半影のほかに透過性の半影が増すことは免がれない (第6図a)。

(ii) 球面絞り

絞り片が線源を中心にしてある半径の球面上を移動するもので 機構が複雑になり,絞り機構全体が大きくなるが透過性の半影は 小さくなる。しかし線源が小さいときは有効であるが,大きくな っては線源の大きさによる半影が増すためあまり効果は期待でき ない(第6図b)。

(iii) 多層 絞 り

絞り片が一段の場合,線源の大きさによる幾何的な半影は避け えないが,絞り片を多段にすればこの幾何的な半影を除くことが できる。また絞り片の側面から放射される二次線も段間に逃がれ 去り,そのために二次線の影響が著しく改善されて利用線束の深 部率が良好である。しかし機構が非常に複雑でかつ大形になるた め S.S.D を小さくとることは不可能で,治療範囲も制限される (第6図 c)。

以上可変絞り機構による絞り方式は任意の照射野を一つの機構 で連続的に得られる点便利であるが、機構が複雑で大形となり、 S.S.D は 30 cm 以上が普通である。さらに放射口に比べ大きな外 観をもつため、治療操作と応用範囲の点で次に述べる交換ツーブ ス方式に劣る。

(2) 交換ツーブス方式

--- 24 ----

(i) クローズドコーン

交換ツーブス方式では種々のツーブスを用意しておいて, 患部

つり下げ形の二とおりに分けられる。 据置形は床面に据え付けたベースの上に直立するスタンドから 水平に腕を出しこの腕で線源容器を支持するもので,据付けは容 易であるが容器の背後にスタンドがあるため照射方向,有効床面 積は著しく制約され,装置の応用範囲を妨げる(第5図a)。 天井つり下げ形はベースを天井面に取り付け,これから懸下す る一本ないしは二本の脚によって線源容器を支持する。これは据 およびS.S.Dに応じて適当なツーブスを照射口に取り付け必要な 照射野をうるのであるが, 絞り機構による方式に比べて半影が著 しく少なく,外観が小形で治療操作が容易であることが特長であ る。 クローズドコーンはツーブスの構造は,ビームが遮へい材で包 まれていて利用線束が規制されるものであるから最も小形になり 半影の点でも良好であるが,ツーブス側壁からの二次線の影響が

無視しえない。しかしこれは側壁に散乱 線の少ない物質を内張りしたり, ツーブ ス先端にフィルタを取り付けて二次線を 除去すれば性能が向上する(第7図a)。 (ii) オープンコーン

種類

オープンコーンは多層絞りの考え方を ツーブスに応用したもので、 コーンに

沿った数段の遮へい体で構成され、各片を結合する構成材のほか は段間を開放形にしてできるだけ散乱線の影響を減じようとする ものである。これは遮へい体の横幅が大きくなるために形状はク ローズドコーンより大きくなる(第7図b)。

以上交換ツーブスによる絞り方式は交換の不便さと,照射野が 連続的に変えられない不便さはあるが,半影は少なく,照射野を 形成するための遮へい体のみで構成されるから形状は必要な最小 限のものとなり、治療の応用範囲を広め、視野を妨げることがな く適確に患部に照射することができて治療に便利である。

また必要に応じて S.S.D は 10 ないし 15 cm のものでも製作で きるから短,中距離照射には最適と考えられる。

3.2 137Cs 治療装置に適した諸方式の決定

¹³⁷Csを線源として用いた場合, その線量率が⁶⁰Coに比べて低い ことから短,中距離照射に適しており,半価層が薄いので遮へいが 容易なことは線源容器の形状を小形にすることができてあらゆる部

701

位の患部に適確な照射ができる装置の可能性をもつものである。

われわれはこの¹³⁷Cs の特性を十分に検討して,短,中距離照射 用装置として広範囲の治療に適した装置にするという方針のもとに 次のような仕様で設計を進めることにした。すなわち

- 線源押し出し式 (i) 照射方式
- 天井つり下げ形 支持方式 (ii)
- 交換ツーブス方式 (iii) 絞り方式

4. 装置の構成と性能

4.1 構成と外観

1

装置全体の外観は第8図に示すとおりで,次の各部から構成され ている。

- (2) 照射ヘッド (1) 線源容器およびカプセル
- (4) 回転台 (3) 支持脚
- (6) ツーブス 制御器および操作スイッチ (5)
- 照準器 (7)
- 4.2 各部の構造と性能

4.2.1 カプセルの構造

線源¹³⁷Cs, 2,000 cは ORNL 製インナー, アウターの二重コン テナに密封されたものをさらに機械的に強いカプセルに封入し, 汚染などの事故に対し十分考慮されている。

4.2.2 線 源 容 器

線源を安全かつ確実に格納するもので、遮へい体は鉛およびタ ングステン合金から成り, ¹³⁷Cs, 2,000 c を収納してシャッタを 閉じたときに容器表面の漏えい線量率が 5 mr/h 以下となるよう にした。第9図に示すように照射時には収納容器の線源移動路内 に設けられた回転シャッタが90度回転し、シャッタの貫通孔を通 して線源が照射ヘッドに押し出される。照射および格納の操作は 操作室からの遠隔操作によって行なわれる。その動作には直流電 動方式が用いられており,停電時でも付属の蓄電池により自動的 に線源は格納位置にもどる。 4.2.3 照射ヘッド 照射ヘッドは容器下部に突き出しており, 照射時には線源をこ の先端に押し出す。ヘッドはタングステン合金から成る円筒で周

----- 25 -----

第8図 天井つり下げ形 ¹³⁷Cs 治療装置の外観

第9図線源容器の構造

囲の遮へいは線源から同一距離の利用線錐内の線量率の1/100以 下に押えてある。

照射ヘッドは容量下部にある手動ハンドルにより360度回転で きる。放射口は円筒の中心軸と直角方向に開口しており, ツーブ ス取付座を取り付け, これにツーブスなどを装着して適切な照射 野をうるようになっている。 4.2.4 支持脚の構造と性能 線源容器は天井に取り付けられた回転台から懸下する二本の脚 で支持され、水平軸に関し前後170度の回転ができる。その操作 は左側軸受部の手動ハンドルにより行なう。 支持脚は二段のセリ出し式可動部分をもった三段のパイプから 成り,可動範囲 900 mm を速度約 10 mm/s で上下する。

702昭和37年5月

第44巻第5号

4.2.5 回 転 台

第8図に示すように回転台は二本の脚を固定し、線源容器を支 持する。台はそれ自体240度の回転ができて、この駆動は電動に て行なう。回転速度は約0.3 rpm である。

4.2.6 制御および操作

脚の上下動および回転台の回転は線源容器支持部のフックにか けてある手もとスイッチによって行なわれる。これをフックから はずすと遠隔操作による線源露出ができないようインターロック が施してある。

制御器は操作室から遠隔操作によって線源の露出格納を行なう もので、次のような各機器を装備している。

(1) 電源開閉器, (2) タイマー, (3) 線源露出格納押ぼた んスイッチ

4.2.7 絞りツーブス

本装置では照射野の限定に交換ツーブス方式をとった。ツーブ スは照射ヘッドの放射口につくツーブス取付座にバヨネット式で 装着される。

4.2.8 照 準 器

照準器はフロントおよびバックポインタから成る。フロントポ インタは患部に対する入射中心を示すと同時に接触防止装置を兼 用し, バックポインタはしゅう動して両者の距離を調整しうると 同時に, 患部に接触しても危険のないように考慮してある。

5. 試験結果

5.1 漏えい線量

5.1.1 線源収納容器の漏えい線量

線源収納容器は¹³⁷Cs 2,000 キュリー収納時に容器表面で5 mr/ h以下という基準で設計されたが、実際に2,000キュリーを収納 したときの容器表面の漏えい線量は1.5~3mr/hとなった。

測定には日立製作所製電離槽形線量率計 (RDI-III 形サーベイ メータ)を用いた。

5.1.2 照射ヘッドの漏えい線量

線源の照射ヘッドにはいっている場合の照射ヘッドの回りの漏 えい線量分布は第10図のようになる。図はツーブスに S.S.D 25 cm, 照射野 3×3 cm 用のものを装着した場合の, 線源中心-線 量率計間の距離を 32.5 cm にとったときに利用線錐中心における 空中線量率に対する同一距離における漏えい線量率の割合を図示 するものである。

5.2 利用線束に関する測定

5.2.1 出力線量率

線源からの距離による空中線量率の変化は大体二乗及比例側に 合致するが,測定位置が線源に近づくにつれて線源内部,カプセ ル,照射ヘッドおよびツーブスからの散乱線の影響により測定器 に感知される線量が増加する。線源からの距離を種々に変えて測 定した空中線量の値を第11図に示す。

5.2.2 照射野による空中および表面線量率の変化

照射野により線量率が変化するのは好ましくないが,¹³⁷Cs線源 が大きいため絞りツーブスによる半影除去の問題があり、照射野 寸法の縮少によって出力線量の低下してくることは避け得ない現 象である。また放射線を患部に照射した際、人体による散乱線の 影響によりその表面の線量率は同じ距離における空中線量率より も大きい。

第11図 線源からの距離による空中線量率の変化

第2表	照射野の大き	さによ	る空中線量率	と後方	散乱係数の変化	化
-----	--------	-----	--------	-----	---------	---

	S	.S.D 25ci	m	S.S.D 40cm			
照射野の大きさ	出力線量率 (r/min)	相対比	後方散乱 係 数	出力線量率 (r/min)	相対比	後方散乱 係 数	
3×3	119	0.98	1.01			1	
5×5	121	1.00	1.03	40.7	1.00	1.03	
6×8	123	1.02	1.05	41.7	1.02	1.05	
8×10	123	1.02	1.05	42.3	1.04	1.06	
10×15				42.8	1.05	1.07	
2142 31 5	1						

照射野による空中および表面線量率の変化と後方散乱係数の変 化は第2表に示すとおりである。

5.2.3 種々のツーブスによる照射野内の空中線量率の変化 照射野内の空中線量分布はできるだけ平坦でかつ半影が少ない

----- 26 -----

ことが望ましい。これはツーブスの設計において十分留意され た。種々のツーブスによる照射野内の空中線分布の変化は第12 図のようになった。

本装置ではその照射方式から線源の円柱側面よりビームを取り 出したが、このような使い方によっても縦軸方向と横軸方向にお 天井つり下げ形セシウム 137 治療装置

----- 27 -----

第14図 フィルター皮膚間距離による Surface-ionization ratio の変化

ける線量分布は非常に良好な対称性を示し、この面での欠陥はま ったくないことが証明された。

5.2.4 照射野による皮下吸収線量の変化

i.

¹³⁷Cs 線源による γ 線が最大の皮下吸収線量を示す点がどの程 度の深さにあるかということは,放射線治療における重要な問題 である。Mix. D を Back Scattering Material とする Shallow chamber を製作し,ファントムにセロファンおよびビニールシー 板を用いた場合のツーブス先端一皮膚間距離によるSurface ionization ratio の変化は第14図に示すとおりである。

5.2.6 フィルタ厚さによる Surface ionization ratio の変化

フィルタの厚さによる Surface ionization ratio の変化を第15 図に示す。

測定はツーブス先端一皮膚表面間距離を4cm にとり,照射野5 ×5 cm² で行なった。

5.2.7 照射中心軸における深部線量率

照射中心軸での深部線量率はS.S.D 40 cm およびS.S.D 25 cm

トを用いてツーブス先端皮膚間距離を4cmにとり, 照射野を種 々に変えた場合の皮下吸収線量を測定した。なお散乱線除去の目 的でツーブス入射側に厚さ2mmの銅板フィルタを取り付け, さ らにツーブス先端に厚さ0.25mmの銅板フィルタを取り付けた。 この結果を 第13 図 に示す。 5.2.5 フィルター皮膚間距離による Surface-ionization ratio の変化 種々の照射野において, ツーブス先端のフィルタに 0.25 mm 銅 において種々の照射野について測定した。測定は深さ0~20 cmに ついて行ない,ファントムとして γ 線入射面が 4 mm 厚のアクリ ル樹脂の水槽を用いた。 第 16 図 はファントム 0.5 mm のにおけ る値を 100 とした深部線量率の変化を示す。 5.2.8 等線量曲線 (Isodose Curve) 治療上,最も重要な意味をもつ等線量曲線は S.S.D 40 cm と S.S.D 25 cm について,照射野を種々に変えたときの等線量曲線

評

論

日

を求めた。第17,18図にそれを示す。

6. 結

¹³⁷Cs を γ線源に用いた放射線治療装置は 短, 中距離照射に適し

言

前述の諸種線量測定試験の結果は所期の性能を十分満足してお り, 文献などのデータとの比較によってもそん色ないことが認め られている。

終りにのぞみ,いろいろとご指導にあずかった千葉大学医学部筧 教授および放射線総合医学研究所田中臨床研究部長に厚く感謝の意 を表わす。

考 参 文 献

- (1) Brucer, M: Nucleonics IV, 43 (1952)
- Eastwood, W.S: Nucleonics II, 62 (1952) (2)
- Brucer, M: An Automatic Controlled Pattern ¹³⁷Cs (3)Machine, American Journal of Roentgenology, 75, 49, (1956)
- Burns, J.E: A Kilo-curie Caesium 137 Beam Unit at (4)Westminster Hospital; Physical Aspect, British Journal of Radiology, 32, 798 (1959)
- (5)Cole, A: Physical Studies on a Short-treatment-distance Caesium 137 Therapy Unit, Radiology, 74, 731 (1960)
- Comas, F. & Brucer, M: First Impression of Therapy (6)with Caesium 137, Radiology, 69, 231 (1957)
- Haybittle, J.L: A Cesium Gamma Ray Therapy Unit (7)Acta Radiologica, 50, 321 (1958)
- John, H.E: A 250 Curie Caesium 137 Unit Designed (8)for Low Dosage-rate at Short Source-skin Distance, British Journal of Radiology, 32, 533 (1959)
- Eastwood, W.S.: The Design of ¹³⁷Cs Source for Tele-(9)therapy, British Journal of Radiology, 33, 243 (1960)

ているのと,設備費,維持費などが低減されるので経済的であるた めに今後大いに発展する可能性を有している。

われわれは¹³⁷Csの諸特性を大きく利用して装置のフレキシビリ ティの向上を図った。すなわち線源移動による照射方式, 交換ツ ーブスによる絞り方式をとって照射ヘッドを極力小形化したので S.S.D15~40 cm においてあらゆる部位の照射を能率的に行なうこ とができた。これは従来の装置に比べて画期的な性能であり、この 種¹³⁷Cs・r線装置としても他に例を見ないフレキシビリティを有す 30

- Johns, H.E: A Cesium 137 Teletherapy Unit for Use (10)at a Source-to-skin Distance of 35 cm, British Journal of Radiology, 32, 224 (1959)
- (11) Wheatley, B. M: A Caesium 137 Beam Therapy Unit. British Journal of Radiology, 33, 251 (1960)
- Clarkson, J. R., Leech, H. J., Taylor & Mason: A Mov-(12)ing-beam Caesium 137 Teletherapy Unit. British Journal of Radiology, 32, 384 (1959)
- Wheatley, B. M: Physical Aspect of the Use of Caesium (13)Fission Products in Teletherapy, 32, 246 (1960)

— 28 —

井 実 E

酸化触媒法により燃焼性ガス,たとえば空気中の CO ガスを検出 する場合, 試料空気の湿度が検出結果に大きな影響を及ぼす。これ を避けるため一般にこの種装置では試料空気を2組の吸収塔に交代 に通して湿気を除去し,吸収塔の一方の使用中に他方の復活を行な うようにしているが、その交代にあたり吸収能力の弱まった吸収塔 から吸収能力の良好な吸収塔に切換わることによって検出部に送ら れる試料空気の湿度に急激な変化が起り,このため検出結果が大き く変動し、この検出結果に基いて動作する制御装置にじょう乱を与 える恐れがある。

本発明はこの点を改良したものである。図において1は試料空気

通路,2はその途中に設けた送風機で,これを出た試料空気は弁3 または3'を通じて吸収塔4または4'に送られ、さらに弁5または5' を経て検出部6に送られる。7は検出部の酸化触媒,8は燃焼熱量 を測るサーモカップル,11は吸収塔と検出部の間に設けた緩衝器, 12は真空ポンプで、これによって吸収塔4、4′内の吸収剤の復活を 交代に行なう。緩衝器11には湿度の高い空気からは湿気を吸収し, 湿度の低い空気に対しては湿気を放出する活性アルミナのような湿 度緩衝物質を入れてあるから,吸収塔の交代によって起る試料空気 の湿度の変化はこの緩衝器で緩和され、検出部にはいる空気の湿度

を安定化することができる。

(坂本)