U.D.D. 621.317.785

一枚円板三相積算電力計の相互干渉について

Mutual Interference between One-Disc Three-phase Watthourmeters

中村奎一*浜崎亀次郎* Keiichi Nakamura Kamejirô Hamazaki

内 容 梗 概

一枚円板三相積算電力計に特有な漂流トルクを追求し,各磁束の配置がどのように干渉誤差に影響するかを 調べた。また,これに対する日立製作所独特の補償法を紹介するとともに,これを用いて開発した YD-2 形積 算電力計について構造,特性などについて述べている。

1. 緒 言

従来,誘導形交流三相三線式積算電力計は1本の共通軸に2枚の 回転円板を取り付け,そのおのおのに単相積算電力計の駆動素子を 配置し,それぞれの素子に与えられた電力に比例した回転力を得て 電力量の計量を行なっていた。

一方,形状の小形化と回転子重量の軽減を図って円板を1枚とし, これに単相駆動素子を2個配置した,いわゆる一枚円板三相積算電 力計がある。この種の計器は主として共通円板上の渦(うず)電流を 介して素子間に漂流トルクを生じさせているが,このままでは正し

い電力量の積算を行なうことはできない。

本文ではこの漂流トルクを検討し、これに対する日立製作所独特の補償法を説明するとともに本補償を用いて開発した YD-2 形積算 電力計について報告する。

2. 回転円板に生ずるトルク

2.1 円板上の渦電流

L. P

1.1

h

まず,誘導円板に作用する交番磁束によって発生する円板上の渦 電流を考える。

第1図は無限に広い導体板に垂直に、二つの大きさ等しく、位相の180度異なった交番磁束 + φ_A 、 $-\varphi_A$ が作用しているときに、板上に生ずる渦電流路を示したものである。渦電流路は図のように2磁束の中性線に関して対称的な偏心した円群になる。なおこれらの円の中心は A、A'(各磁束の中心)を結ぶ直線上にある。

今,図において任意の円 C_1 (半径r,中心0)をとってみると, この内部の円群は誘導円板 C_1 上に+ Φ_A のみが作用した場合に発生 する円板上の渦電流路群に等しくなる。したがって C_1 内部,すなわ ち誘導円板上の任意の点の電流ベクトルを見いだすには、このよう に影像磁束を考えてこれら二つの磁束による電流のベクトル和とし て求めることができる。

今 2S: 二磁束間の距離

r: 任意の電流路円 C₁の半径

e: C₁の中心0よりA点までの距離

とすれば、これらの関係は次のように表わすことができる(1)。

第1図 無限に広い導体板上に2磁束+Φ_A, -Φ_A が鎖交したときの渦電流分布

ルクを計算する。(1)式より+ ϕ_A の円板 C_1 に対する影像磁束- ϕ_A を考えて、無限平面におけるトルクを算出すればよい。

+ Φ_Aによる B 点の電流密度 I_Aは,回路のインピーダンスが抵抗 分のみから成るとすれば次のように表わされる。

2.2 回転トルク 第2図に示すように円板 C_1 内のA点を中心に第一の磁東+ Φ_A があり、その付近に $\angle OAB = \pi/2$ 、 $\overline{AB} = d$ なるB点を中心に第二の磁束 Φ_B があるとする。ただし、これら2磁束の直径はdに比べて十分小さい円内に一様に分布しているとする。 ここで、+ Φ_A の作る円板上の渦電流が Φ_B と作用して発生するト

* 日立製作所那珂工場

ただし $arphi_A$ は磁束の実効値を表わすものとする。 I_A の円板の中心に向かう成分 I_{Ar} は

$$I_{Ar} = I_A \cos \gamma = \frac{ft}{\rho d} \Phi_A \cos \gamma \dots (4)$$

同様に $-\phi_A$ による B 点の中心方向の電流密度 $I_{A'}$, は

$$I_{A'r} = \frac{ft}{\rho \sqrt{(2S)^2 + d^2}} \Phi_A \sin(\gamma + \delta) \dots (5)$$

1108 昭和38年7月

日 立 言

評 論

第 45 巻 第 7 号

ときの漂流トルク $T_{m'}$ は、 $T_{d'}$ を求めたと全く同様にして次の式で 表わすことができる。

ここで留意すべきことは B 点が移動して B' 点にくる, すなわち d=0 となるかまたは二磁束が円板軸を含んで一直線上にあると,上 式の γ , α , β はともに零になり漂流トルクが発生しないのである。

2.4 漂 流 誤 差

今, 求めたトルクの比をとって

を定義し、これを漂流誤差と呼ぶことにする。(7)、(8)式より

$$\varepsilon_{m'} = \frac{\frac{1}{\sqrt{(2e)^{2}+d^{2}}}\sin(\gamma-\alpha) - \frac{1}{\sqrt{(2e+2S)^{2}+d^{2}}}\sin(\gamma+\beta)}{\frac{1}{d}\cos\gamma - \frac{1}{\sqrt{(2S)^{2}+d^{2}}}\sin(\gamma-\delta)}$$
$$= \frac{\frac{1}{4e^{2}+d^{2}} - \frac{r^{2}}{(r^{2}+e^{2})^{2}+e^{2}d^{2}}}{\frac{1}{d^{2}} - \frac{r^{2}}{(r^{2}-e^{2})^{2}+e^{2}d^{2}}} \times 100 \quad (\%) \dots \dots \dots (10)$$

上式を用いて計算する。円板直径 r を一定に保って e, d を変化したときの T_d' および ε_m' を求めると第4図のようになる。

- (1) 第4図(a)より、dを小さくすると ɛm' が小さくなる。同時に Ta' は増す。
- (2) 第4図(b)より、eは大きいほどよい。すなわち e/rは1 に近いほどよいが、あまり大きくとると Ta' が激減する。

円板中心より第一磁束までの距離 e(mm)

第4図 回転トルクと漂流誤差(計算値)

 $-\Phi_c \sim -\Phi_c'$ 間のトルクも同様である。次に $+\Phi_c \sim -\Phi_c'$ 間および

3. 積算電力計の漂流誤差

ー例として、実際の積算電力計は**第**5図のように第 I 素子側に $\phi_{p}, \phi_{c}, -\phi_{c}, 第 II 素子側に \phi_{p}', \phi_{c}', -\phi_{c}' が分布している。ここ$ $で<math>\phi_{p}, \phi_{p}'$ は電圧磁束, $\phi_{c}, -\phi_{c}, \phi_{c}', -\phi_{c}'$ は電流磁束である。 今,図のように両素子の各磁束を円板回転軸0に関して対称に配置 すれば $\phi_{p} \ge \phi_{p}'$ の間にはトルクを発生しない。また + ϕ_{c} ~+ $\phi_{c}',$

 $-\phi_c - +\phi_c'$ 間のトルクは, それぞれ大きさ等しく方向が反対になっているので相互に打ち消される。すなわち, 2素子を軸対称に配置することにより2電圧磁束間, 2電流磁束間の有害なる干渉トルクを除去することができる。結局,残された干渉トルクは $\phi_p - +\phi_c'$ 間および $\phi_p - -\phi_c'$ 間のもの, ならびに $\phi_p' - \phi_c$, $\phi_p' - \phi_c$ 間のトルクである。 $\phi_p - +\phi_c'$ 間および $\phi_p - -\phi_c'$ 間のトルクは大きさ等しく方向も等しい。したがってこの干渉トルクを論ずるには

一枚円板三相積算電力計の相互干渉について

1109

クは Φ_p~+Φ_c 間のものである。これらの比を漂流誤差とすれば, これは(9), (10)式で求めた ε_m' に全く等しい。

ここで、積算電力計の漂流誤差を次により定義する。

ここに Tm: 積算電力計の漂流トルク

8.7

W.

107

T_d: 積算電力計の駆動トルク

ただし,両トルクとも各磁束の任意の位相角における最大値を示 す。

積算電力計の漂流誤差 εm は漂流トルクと駆動トルクとの比であ り、したがって em を実験的に求めるには次のようにすればよい。 すなわち,第6図で第1素子に電圧 V12,電流 I1を与え,これらを 同相にして円板を駆動させる。一方,第Ⅱの素子にはたとえば | I3 | = | I₁ | なる電流を流し、これを I₁ に関して移相する。ここで発生す るトルクを考えてみると、 $V_{12} \sim I_1$ 間の正常な駆動トルク、 $V_{12} \sim I_3$ 間, I1~I3 間にそれぞれ発生する干渉トルクである。 I3 を移相すれ ば第6図(c)にみられるように誤差は正弦曲線を描く。この曲線の 振幅は明らかに駆動トルクに対する漂流トルクの%で表わされた比 であり、 Em にほかならない。

実際の積算電力計では漂流誤差は円板の渦電流によるものが大部 分を占める構造にすることができるので、そのほかの磁気的干渉ト ルクを無視して考えると

ることを確認したが、素子間隔をあまり大きくすると有効磁束が円 とすることができる。そこで、円板軸に関して2素子を対称に配置 すれば前述のように I1~I3 間のトルクはなくなり、結局、この誤差 板周辺に近づき,漂流誤差の減少より駆動トルクの減少が顕著にな は V12~I3 間のトルクに起因する干渉誤差となる。したがって,前 ってくる。 節の結論と同様に積算電力計の漂流誤差を小さくするには、2素子 4. YD-2 形積算電力計の漂流誤差補償法 を軸対称に配置し,素子間隔を大きくとり,なおd すなわち電流磁 YD-2 形積算電力計は次節で説明するように Y-7A 形積算電力計 束のピーク間の距離の小さい素子を用いることなどが有効である。 磁気干渉に関する測定例を第7図に示す。二つの駆動素子を同一 を駆動素子とする計器であり、その漂流誤差補償法について以下説 円板に配置するためには, 単一支持わくを使用しなければならない 明する。 この計器は漂流誤差を極力小さくするために二つの電磁石を円板 が、曲線(イ)は非磁性体のわくを使用した場合を示し、(ロ)は磁性 体で支持した場合を示す。円板は直径 108 0 のものを使用し、駆動 軸に関して対称に配置し、また素子間の電磁結合を少なくするため

素子は分離形単相積算電力計(Y-7A形)を素子間隔84mmにして 測定した結果である。干渉誤差は(ロ)が(イ)の2倍以上になってい るが、このことから各駆動素子を相互に磁気的に隔離することが特 に望まれるわけである。なお,鉄などの磁性体で両素子を結合する ことは、いたずらに漏えい磁束を助長するばかりでなく、Ⅰ~Ⅱ素 子電気回路の相互誘導作用を増大し,また漏えい磁束はそれ自身円 板に作用してトルク発生の原因ともなり,二次磁束を発生し,これ らが相まって磁気的干渉による誤差を生ずる。

第8図は素子間隔が漂流誤差にどのように影響するかを実測した ものである。円板は前と同様に108 Ø であり、駆動素子もY-7A形 積算電力計のものを使用した。第5図(b)と同様な結果になってい

1110

昭和38年7月 論 日 評 V

第45卷第7号

(b)(a) 第10図 補償原理の説明

に両素子を非磁性体で支持した。第9図において第Ⅰ,第Ⅱ素子は それぞれ単相積算電力計の電磁石を示し、おのおのの電流鉄心の上 部には電圧磁束とのみ鎖交し,電流磁束とは作用しない補償巻線が 取り付けてある。二つの補償巻線は中間に適当なインピーダンス(イ ンダクタンス分)Zを直列に接続して閉回路をなしている。

第10図によってその補償原理を説明すると、第1素子の電圧V1 により電圧回路にそれより約80度遅れた励磁電流 I,が流れ、I,に よりそれより約25度遅れた電圧有効磁束 Øv1 が発生し, 円板に鎖交 している。一方、 φ_{v_1} は第 II 素子の電流磁束 φ_{I_3} による円板上の渦 電流 i_{ec} のうち、一部の遠く ϕ_{v_1} 下まで及んできた電流 i_{em} と作用し て,ここに漂流トルクTm"を作る。

ここに k: 常数

 φ : Φ_{V_1} , i_{em} 間の位相角

一方, Φ_{v_1} は補償巻線にそれより 90 度位相の遅れた誘導電圧 e_c を 誘起し、この回路に電圧e_cより回路のインピーダンス角をだけ遅れ た補償電流 ie を流す。ie は第Ⅱ素子巻線にまで流れ、そこに電圧磁 束に相当する補償磁束 $\varphi_{V_{1c}}$ を発生する。次に $\varphi_{V_{1c}}$ は φ_{V_1} の帰路漏 えい磁束 Øi とのベクトル和である新たな補償磁束 Øaを生ずる。い いかえると新たに第Ⅱ素子に補償巻線を通して電圧補償磁束 Øc が 生じたことになる。この Φ_c と i_{ec} の間に生ずる補償トルク T_c は

ここで k': 常数

 $\varphi': \Phi_c, i_{ec} 間の位相角$

ることは重畳の理によって明らかである。

第11図は補償回路の電流と誤差曲線の関係を示したものである。 図(a)は $\xi=75$ 度一定として補償アンペアターンH(補償電流×補 償巻線の巻数-この場合,5ターン)を変化したものを示し,(b)は くを変化したものを示し、いずれも第7図の測定法によったもので ある。*H*=1.6余, ξ=75度付近が最良である。

5. YD-2 形三相広範囲積算電力計

前述した漂流誤差補償装置を施すことにより漂流の少ない YD-2 形三相広範囲積算電力計の完成をみたが,以下この計器の構造,特 性の特色について述べる。

5.1 構 造

— 56 —

第12図はこの計器の外観であり、第13図は外形寸法図を示す。 主要寸法のうち()を付けた数値は従来品 Y-33 形三相積算電力計 のものであるが、幅、奥行は大差ないが高さが約80%に縮減され、 設置面積の節約に有効である。第14図は各素子の配列を示してい るが,干渉誤差の少ないように軸対称に駆動素子を配置し,また円 板振動を極小にするため2個の制動磁石を前面に取り付けてある。

 $T_m'' + T_c = 0$ (15) とすることができれば漂流トルクは除去される。なお、ここでは便 宜上 Ø13の作る渦電流が Øv1 と作用して作られる干渉トルクについ て説明したが、 Øv1 の作る渦電流が Ø13 に作用して作る干渉トルク も同じ大きさであり、これは Φ_c の作る渦電流が Φ_{I3} と作用して打消 すことも容易に説明できる。なお実際には Ø₁3 のほかに - Ø₁3 が存

第12図 YD-2 形積算電力計の外観

1111 一枚円板三相積算電力計の相互干渉について

1

 $[n_{ij}]^{(n)}$

Proph

14

h

6

12

Nº-

W

0.0

30. 2

回転子重量は35gで従来品の70%に軽量化され、機械的良度の 向上と寿命の延長が図られている。

駆動素子としては Y-7A 形単相広範囲積算電力計の電磁石を採用 しているが、2素子間の磁気的干渉を少なくするためにアルミ合金 ダイカスト製支持わくに取り付けてある。第15図にみられるよう に, 駆動トルク平衡装置は電圧鉄心に磁気分路板を取り付け, これ に装置した鉄ネジによりトルク平衡を微細に行なえる構造である。 軽負荷調整および力率調整装置は Y-7A 形と全く同様である。

電流電磁石には, 上部に前述の漂流誤差補償コイルが電気回路と 十分に絶縁されて取り付けられ,かつ過負荷特性補償用磁気分路子

採用した。 5.2 特

性

の下に堅く固定され、計器中央に設置したリアクタと直列に接続さ	この計器は JIS C-1211 広範囲積算電力計規格を十分に満足する			
れて漂流誤差補償装置を形成している。	ものであるが,第16回におもな特性を示した。負荷特性は定格値の			
計量装置は Y-7 形, Y-7A 形積算電力計と同様に宝石軸受式を採	5%から150%の過負荷まで保証するものであり、さらに温度特性			
用し、摩擦トルクの低減と計器の寿命延長に役だっている。	は第一種, 第二種特性とも補償されているので, 広範囲にわたる外			
そのほか,制動磁石は日立金属工業株式会社製アルニコ磁石	気温度の変化にも少ない誤差で動作するものである。			
(YCM-1 磁石鋼) 2 個を使用して小形強力なものとし、それぞれに	漂流誤差は前述の補償法により大幅に改善され、無補償の場合の			
温度補償装置を設けており,またネジによる制動力の微調整方式を	電流干渉誤差(第6図参照),電圧干渉誤差がそれぞれ1%程度あっ			
57				
37				

1112 昭和38年7月

日 立

200V 20(10) A 50 \sim

評

第45卷第7号

第1表 YD-2 形積算電力計の特性定数

the second s				
			YD-2	Y-33
計器良度	計 器 定 数 全負荷速度 全負荷トルク 回転部重量 機械的良度	Rev/kWh rps g-cm g	300 0.577 16.5 35 0.25	300 0.577 14.5 50 0.14
電圧回路	励 磁 電 流 電 力 損 失	m A W	23.0 0.9	18.9 0.95
電流回路	電力損失	W	0.48	0.95

たものが、それぞれ 0.3% 程度になっている。

そのほか始動電流,電圧,周波数,不平衡などはいずれも JIS を 十分満足するとともに,従来品と比べて一段と改良されている。

第1表はこの計器の特性定数を示すものである。

6. 結 言

YD-2 形一枚円板三相積算電力計は駆動素子として Y-7A 形単相 積算電力計のものを採用し,過負荷 150% まで保証する計器として 開発されたが,この形式の計器に発生する漂流誤差について解析を 行なった。その結果,漂流を少なくするためには,

(1) 素子間の磁気的干渉を少なくするために非磁性体支持わく を採用する。 (4) 電流磁束の二つのピーク位置の間隔を小さくする。

ことを究明した。

論

しかし,積算電力計は特性,構造上種々の制約があるので,漂流 をできるだけ少なくなる構造にし,さらに新しく補償を施すことに より干渉誤差を極小とする方法をとった。すなわち,おのおのの電 流鉄心上に電圧磁束のみと作用する補償巻線を取り付け,これと直 列に抵抗とインダクタンスよりなるインピーダンスを接続して閉回 路を形成して新たな補償磁束を発生せしめる独自の方式を考案した が,この結果,無補償の場合に約1%近くあった漂流誤差を約0.3% 程度に縮減させることができた。

またこの計器は従来品に比べ回転子を1枚としたために形状の小 形化が達せられ,負荷特性,温度特性の一段の改良,微調整方式の 採用がなされている。

最近,電力量の厳正なる取り引きのために特性の優秀性とともに 経年劣化の少ない長寿命計器の開発が望まれているが,この計器に はY-7形積算電力計に採用したと同様に宝石軸受計量装置の採用, 外部よりの熱的,磁気的じょう乱にきわめて安定した小形強力な YCM 磁石の採用,回転子重量の低減,駆動トルクの増大のほか, 下部軸受ボールにはさびの発生しない耐摩耗性にすぐれた特殊合金 ボールの採用などが実施されている。

終わりに臨み,この計器の開発にあたり終始ご指導いただいた日 立製作所日立研究所の関係各位に厚く感謝の意を表わします。

(3) 二つの駆動素子間隔を大きくとる。

参考文献

(1) R. M. Morton: A. I. E. E (April 1936)

一般に1個の円筒状永久磁石またはこれに代えて多数の棒状永久 磁石を円筒状に配置したものをもって,対物レンズおよび投射レン ズを並列に励磁する電子顕微鏡などの電子レンズ系においては各レ ンズの焦点距離は一定していて,終像倍率を変化することは困難で ある。

この発明は永久磁石によって励磁される対物レンズおよび投射レンズの中間の継鉄中に中間レンズ間げきおよびその励磁線輪を設

け、この中間レンズにおける励磁の調整により、この種の電子レン ズ系の終像倍率を広範囲にわたって変化することができるようにし たものである。さらにこの発明においては対物レンズおよび投射レ ンズはともに永久磁石で励磁するので、特に励磁のための電源を必 要とせず、したがって電源電圧の変動にもとずく不安定のおそれも なく、高い安定度を保つことができる。 (永 田)

