U.D.C. 543.51.08

日立電子スピン共鳴分析計付属装置 簡易形スーパヘテロダイン受信機の設計と諸特性

Design and Characteristics of X-Band Superheterodyne ESR Spectrometer

岡 部 哲 夫* 加 藤 光 平** Tetsuo Okabe Kôhei Katô

内 容 梗 概

電子スピン共鳴吸収の測定において、スペクトルの検出感度と分解能を向上させるために、スーパヘテロダイン受信法が採用される。筆者らは、日立 X-バンド電子スピン共鳴分析計の特殊付属装置として、簡易形ス ーパヘテロダイン受信機を試作し、きわめて良い結果を得た。得られた総合検出感度は ~2×10¹¹ spins・*ΔH* である。

本装置では"簡易形"という観点から自動周波数制御は信号周波数に対してのみ行ない,中間周波数そのものに対しては採用しなかった。

本報告は設計の趣旨,装置の構成・性能および二,三の実験結果について述べてある。

1. 緒 言

不対電子の磁気的回転エネルギー準位間の遷移を観測する電子ス ピン共鳴(Electron Spin Resonance 以下略して ESR と書く)法 は,分光学の一翼として,物性研究や遊離基の検出に使用されてい

る。その使用範囲も物理から化学を経て生物,医学の分野に及び, 応用分野の広さは各種分光分析法の中でも随一であるように思わ れる。

ESR において, 吸収スペクトルの検出感度を向上させる技術の一つに, 鉱石検波器のフリッカ雑音低減を目的として, 信号搬送波の 周波数を上げることがある。この目的に沿って, 通常100k cps 程 度の高周波による磁界変調法が採用されている。しかしこの方法 には

- (1) 非常に吸収線幅の狭いスペクトルは、緩和時間の関係で、 測定できない。
- (2) 何らかの理由で、高周波による磁界変調が技術的に困難で ある場合が少なくない。
- (3) 試料のマイクロ波吸収が飽和しやすい場合には,吸収スペ クトル S/N を良く測定することがむずかしい。

などの理由で使用上に限界がある。

信号搬送波の周波数を上げる別の方法として,スーパへテロダイ ン受信がある。これは信号周波数を適当な周波数,いわゆる中間周 波数 (Intermediate Frequency 以下略して I. F. と書く)に変換し て増幅検波するもので,上記の高周波磁界変調法にみられる限界が 克服できる利点がある。しかも検出感度が 100 k cps 程度の磁界変 調より高いので注目されていたが,装置の大規模化,それに伴うコ スト高,および操作の複雑さがその普及を妨げていた。

われわれは装置が小形でしかも操作が容易な簡易形スーパへテロ ダイン受信機を,日立 X-バンド電子スピン共鳴分析計の特殊付属 装置として開発し製品化した。

2. 原理と設計上の諸問題

第1図 簡易形スーパヘテロダイン受信機を装着した 日立電子スピン共鳴分析計

このうちで鉱石検波器による雑音は、現状では、測定系の雑音の 大部分を占めていることが知られている。すなわち、鉱石検波器の 雑音 V_nは自乗検波領域においては、

で与えられる(1)。

— 76 —

ここで使われた記号は次のとおりである。

- fc: 信号搬送波の周波数
 - α: 鉱石検波器によって決まる定数
- *I*₀: 鉱石検波器を流れる電流
- *R*: 定 数
- k: ボルツマン定数~1.38×10⁻¹⁶ erg•deg⁻¹
- Ta: 鉱石検波器の動作温度
- Δf: 搬送波の帯域幅

(1)式において,第1項はフリッカ雑音,第2項は熱雑音といわれるものである。熱雑音の低減には鉱石検波器の動作温度を下げる

ESR の測定において、おもな雑音源は次の3点である。
(1) クライストロン (マイクロ波発振出力管)
(2) 鉱石検波器
(3) 増幅検波回路

* 日立製作所那珂工場** 日立電子株式会社

のが効果的であるが、現状ではフリッカ雑音のほうが多く、問題に ならない。フリッカ雑音は半導体に特有なもので、その低減には差 し当たってfcを大きくすればよい。その方法として (イ) 磁界変調周波数を上げる。 (ロ) スーパへテロダイン受信を採用し、適当な周波数変換を行 なう。

る。この30 M cps は中間周波数 I. F. と呼ばれるものであるが,20 M cps から70 M cps の間で適当に選択されている。このように,ある周波数の信号搬送波を直接検波する代わりに,それに近い周波数と混合し,適当な I. F. に変換してから検波する方法をスーパヘテロ

NOISE FIGURES

第3図 スーパヘテロダイン受信機における雑音と中間周波数

などがある。

クライストロンと増幅検波回路による雑音については別の機会に ゆずり、ここでは述べない。

次にスーパヘテロダイン受信における動作原理を簡単に述べる (第2図参照)。

信号用クライストロンにより発振されたマイクロ波

~ $\sin \omega_1 t$: ~ 9,400 M cps(A) はマジック T_{ee} を経て空洞共振器に達する。ここで適当な周波数 ~ $\sin \omega_m t$(B)

により磁界変調された吸収信号

f(t).....(C) が発生すると,

~ $\sin \omega_1 t \{1 + f(t) \cdot \sin \omega_m t\}$(D) であらわされるマイクロ波は、ふたたび、マジック T_{ee} を経て第2 のマジック T_{ee} に達する。一方、局部発振用クライストロンより吸 収信号とある適当な周波数 (本装置では 30 M cps) だけ周波数の異 なるマイクロ波 (したがって ~9.400±30 M cps) ダイン受信と称し、通信やラジオなどに広く用いられている。

ともかく,得られた30 M cps の I.F. は約数十デシベル増幅された後,検波されてふたたび元の信号搬送波

$\sim f(t) \cdot \sin \omega_m t$		G
-----------------------------------	--	---

に戻り, さらに数十デジベル増幅され, 同期整流されて直流出力

 $\sim f\left(t
ight)$(H)

になる。この直流出力が記録計もしくはブラウン管に記録される。 本装置で使用される鉱石混合器はバランスト・ミキサ形になって いるが、その利点は次のとおりである。すなわち、2個の鉱石混合 器において、信号用クライストロンの発するマイクロ波の位相は同 位相 (in phase) であるのに対し、局部発振用クライストロンの発す るマイクロ波の位相は相互に反対 (out of Phase) になっている。 このために局部発振用クライストロンの発する雑音は打消されて、 測定系にはいってこない。

本装置の製品化に際して、特に注意した点は次の点である。

(1) 中間周波数の決定

I.F.を選択する際に, 文献 (2) および (3) を参照し, 70 M cps および 30 M cps について装置を製作し, その雑音指数を比較し た結果, 30 M cps を採用した。

(2) バランスト・ミキサ形の採用

バランスト・ミキサ形を採用したのは、上述のとおり、局部発 振用クライストロンのマイクロ波雑音を除去するのが目的であ る。実験の結果、シングル・ミキサ形の場合に比して得られる雑 音指数の改善は1dB前後であった。

(3) I.F. に対する自動周波数制御

緒言に述べたように、本装置の性格を考えて、特に I.F. に対する自動周波数制御は採用しなかった。このために I.F. 増幅検波回路の周波数帯域特性を 3 M cps (-3 dB) と1 平坦帯域を 1

なるマイクロ波(したかって ~9,400±30 M cps)		回路の周波数帝政特性を3M cps(-3dB)とし、半坦帝政を1
$\sim \sin \omega_2 t \dots (E)$		M cps とした。一方、局部発振用クライストロン電源の安定度は
を第2のマジック Tee の他端に導入する。マジック Tee の両分岐に		10 ⁻⁴ であり,使用したクライストロンの特性から,これは0.8 Mcps
鉱石混合器を置き、これら2周波数の差30M cpsを取り出すが、こ	4.0	程度,したがって,共鳴磁界に換算して 300 mG 程度の変動に相
のとき,吸収信号の波形は		当する。このことは
$\sim \sin (\omega_1 - \omega_2) t \{ 1 + f(t) \cdot \sin \omega_m t \} \dots (\mathbf{F}) \}$		(イ) 広帯域化した結果,検出感度の低下を招く。
になり、信号搬送波は40 cpsから30 M cpsに変換されたことにな		(ロ) 300 mG 以下の線幅の狭い吸収スペクトルは測定でき
	77	

簡易形スーパヘテロダイン受信機 第4図

talio

などを意味する。 われわれは装置の低価格化と操作の容易性か ら,あえて I.F. に対する自動周波数制御を採用しなかったが,採 用したほうが有利であることはいうまでもなく,本装置は顧客の 要望があれば付加できるようになっている。

MICROWAVE BRIDGE と L.F. MAIN-AMP は日立電子スピン共鳴 分析計の標準品を使用する。

第5図 簡易形スーパヘテロダイン受信機の構成

- 磁界変調周波数 $40 \, \mathrm{cps}$ (4) $30 \pm 1.5 \text{ M cps} (-3 \text{ dB})$ (5)I.F. 增幅特性 (6) 総合雜音指数 ~11 dB(ただし変換損失を含む) $\sim 2 imes 10^{11} \, {
 m spins} \cdot \Delta H$ (7) 総合検出感度 本装置の各部の仕様は次に述べるとおりである。 (1) マイクロ波回路関係
- 1. クライストロン V-153C (ヴァリアン社製)
- NT OO TITT 1. 1. 1. T

(4) I.F. 増幅検波回路の諸特性

本回路は、(1)により、I.F.を30 M cps, 増幅特性を30±1.5 M cps (-3 dB), 増幅度を 60 dB, 減衰器を 61 dB とした。 検波 特性その他詳細については省略する。

(5) マジック T_{ee} の設計

マイクロ波の漏えい、バランシングについては特に留意した。

3. 装置の概要

本装置の構成は、日立 X-バンド電子スピン共鳴分析計の特殊付 属装置であるので、次のようになっている。

(1) 電 源 部

局部発振用クライストロンのヒータ, リペラ, キャビティ各電 源, I.F. 増幅検波回路のヒータとプレートの電源を収容する。

(2) スーパヘテロダイン受信部

局部発振用クライストロンを含むマイクロ波回路一式と, I.F. 増幅検波回路および低周波増幅回路を収容する。

なお,本ユニットと電子スピン共鳴分析計のマイクロ波ブリッ ジとを接続する導波管なども含んでいる。

本装置の構成を第5図に示す。

本装置の総合性能は次のとおりである。

- (1) 受信周波数 9,300~9,500 M cps
- (2) 中間周波数 $30\,\mathrm{M}\,\mathrm{cps}$
- (3) 受信方式 バランスト・ミキサ形

2.	ミキサ	1 N 23 W E または F
3.	マジック Tee	平衡度 50 dB 以上
4.	移 相 器	190 度以上
5.	減 衰 器	35 dB 以上
(2)	I.F. 回路関係	
1.	増 幅 度	60 dB 以上
2.	平 坦 帯 域	1 M cps
3.	減 衰 器	61 dB
4.	雜 音 指 数	2 dB 以下
(3)	電源回路関係	
1.	ヒータ電源	直流, 安定度 10 ⁻³
2.	B−電源その他	安定度 10-4

4. 二, 三の実験と検討

(1) 諸特性の測定

本装置の雑音指数,検出感度,帯域特性,信号増幅度その他の 測定結果は前章に記述したとおりであって,測定法など詳細につ いては省略する。

(2) 安定度試験

本装置は, I.F.に対する自動周波数制御を採用していないので, 局部発振周波数の変動に基づく信号雑音比の変動をテストした。 測定時におけるAC電源の電圧変動は、常時、±5V前後である。 第6図はその結果であって、測定の開始より終了まで、およそ、

DP.PH-ベンゼン溶液を使用。調整後連続掃引2時間。 第 6 図 装 置の 本 安 定 度試験

第7図 信号出力と検出感度の関連

2時間経過しているが,信号雑音比の変動はまったくみられない。 したがって, 溶液中のラジカルを測定する, いわゆる高分解能 ESR には不向きであるが、その他のすべての測定(固体中のラジ カル, 遷移金属イオン, 有機半導体, 光化学反応, 放射線損傷, 解媒機構,化学反応,高分子化学,生物,医学など)は必要かつ 十分であると思われる。

にあげても信号雑音比が向上する(5)。これらの詳細については別 の機会に述べたい。

スーパヘテロダイン受信機における雑音には、以上のほかに、 マイクロ波ブリッジの機械的振動による雑音がはいってくる。マ ジック Tee のバランスを 50 dB 以上とる必要があるが,この結果, 空洞共振器などの振動がバランスに影響し雑音の原因となる。同 様の理由から、たとえばマイクロ波漏えいなどないよう、マイク ロ波ブリッジの設計には細心の注意が必要である。

(3) 信号出力と最高検出感度の関係

最高検出感度を得る条件を見出すために、われわれは、局部発振 周波数の出力をパラメータにして,信号周波数の出力と検出感度 の関係を調べた。第7図はその測定結果である。すなわちある任 意の信号周波出力に対して,検出感度は局部発振周波の出力によ り異なる。代表的な有機遊離基として知られる Diphenyl picryl hydrazyl については、約0.9 mW の信号周波出力に対して最適値 がみられ、諸文献(1)(4)にみられる値とほぼ一致する。すなわち、 1mW以下ではスーパヘテロダイン受信が有利で、1mW以上で は100kc変調法が感度がよい。第8図はスーパへテロダイン受信 法における信号出力と検出感度の関係と, 高周波磁界変調法にお けるそれとを比較したものである。

(4) 二, 三の注意

スーパヘテロダイン受信機における雑音には, 鉱石混合器によ る雑音のほかに、クライストロンと I.F. 増幅検波回路による雑音 が同等に存在することが考慮されなければならない。クライスト ロンによる雑音を除去するために、マイクロ波出力を磁界変調周 波数により変調することが効果的である。われわれは400 cps で 磁界変調を行ない、かつマイクロ波の出力変調を行なってきわめ て良い結果を得た。 また, 磁界変調周波数を 40 cps から 400 cps

言 5. 結

電子スピン共鳴吸収が不対電子をきわめて高感度に検出し得るこ と、およびスペクトルの微細構造・超微細構造により物質の電子構 造を鮮明に解析し得ることは,この方法が研究や分析に無限の応用 を有することを示し,装置もまた限りなく改良されていくことを暗 示している。スーパヘテロダイン受信による方法が高周波磁界変調 法に比べて格段にすぐれたものであり、今後, ESR 測定の主流を占 めることが想像される。

終わりに日立製作所那珂工場と日立電子株式会社の関係各位のご 指導,ご協力に対し,深くお礼申し上げる。

考 文 献

- (1) G. Feher: Bell System Technical Journal 36, 449~484 (1957)
- D. j. E. Ingram: Spectroscopy at Radio and Microwave (2)Frequencies 33

(Butterworths Scientific Publications 1955)

- (3) P. D. Strum: Proc. Inst. Radio Engrs. 41, 875 (1953)
- Varian Instruction Manual on Superheterodyne ESR Sys-(4)tems.
- T. Okabe: Pittsburgh Confernce (Mar. 1965) (5)

