U.D.C. 621. 382. 3

ホームラジオ用高逆耐圧シリコンパワートランジスタの開発

Development of High-Collector Voltage Silicon Power Transistor 2SD190 for Home Radio Use

鈴木仁一郎*佐藤直信* Jinitirô Suzuki Naonobu Satô

内 容 梗 概

ホームラジオの出力増幅用として, 三重拡散形シリコンパワートランジスタ2SD190を開発した。AC100V 整流電源で使用でき,ひずみ率10%以下で1Wの出力が取り出せるよう設計されたトランジスタであり,高 いコレクタ逆耐圧を有することが特長である。高逆耐圧化のための設計的考察,製法,特性,動作結果を報告 する。また,高電圧使用のため,動作時におこる破壊を防ぎ,信頼度を向上するために,特に二次降伏特性と 過渡熱抵抗を測定し,二次降伏突入温度を求めてこれより安全動作領域を規定した。 2SD190は,すでに実装テストでも好結果を示し,量産を開始した。

1. 緒 言

AM, FM 用ポータブルラジオのトランジスタ化により,半導体工 業は一大発展をとげた。現在の生産量の大半は、これら用途のトラ ンジスタであるが、一方、5球、6球スーパーを主流とする一般の ホームラジオも,国内,国外においてなお相当の市場をもっている。 しかし、これらホームラジオには、小形、軽量、安価なことが要求 されながら、100 V の商用電源に耐える安価な高逆耐圧の出力段用 トランジスタがなかったことにより、いまだに真空管が使われてい る。しかし、最近シリコントランジスタの急速な技術の進歩により、 高逆耐圧化に成功し,同時に真空管にみあう価格的見通しもついた ので、ここにホームラジオ出力段用シリコンパワートランジスタを 開発した。これは、100V 交流電源を整流して、そのままトランジ スタに印加できるので、電源トランスを省略できるため、それだけ 安価となる。また、これにより、小形,軽量、高信頼、小消費電力など のトランジスタ独得の利点も加わり、しだいに真空管から切り換わ っていくことが予想される。しかし、この出力段用トランジスタは、 300V 以上という非常に高い逆耐圧が要求されるので、開発途上困 難も多かった。特に高耐圧,低価格,高信頼化のために, Passivated Mesa (PM) 形にし新しいステムを使用した (第1図)。

また,高耐圧化および安全動作のためには,*i*層の比抵抗および 厚さの最適設計,安全動作領域の設定に注意した。これら考察を中 心に,その開発の概要を報告する。

2. ホームラジオ出力段用トランジスタの要求特性

ホームラジオ出力段用トランジスタは、電源トランスレスで、AC 100V 整流電源を直接コレクタ・エミッタ間に印加する。したがっ て、電源変動、過入力時のサージ電圧などの高い電圧に耐えること が第一の条件であり、次に、A級シングルとして1Wの出力がとり 出せる電気的特性を有することが必要である。 第12図は実用回路 を示したものであるが、このときのコレクタ・エミッタ間にかかる DC 電圧は、沪波回路およびバイアス回路での電圧降下を考えると、 無信号時約90V である。しかし、A級増幅のため最大出力時には、 約2倍の電圧がかかり、180V、さらに10%の電源変動を考え最小 200V 以上は必要である。1.5倍の安全度をとり、300V 以上を目標

第1図 ホームラジオ出力増幅用 2S D190

第2図 2SD190 の構造と不純物分布

η: トランスの効率

R: 負荷抵抗

(1) 式に V_{CE}: 90V, V_{CE(sat)}: 5V, η: 80% の数値を入れると, I_c: 30mA, 無ひずみ信号時のコレクタ損失 P_c: 2.7 W となる。コ レクタ電流には余裕をとり, I_c: 50mA で管理, そのときの電流増 幅率を 60 とし, 最大コレクタ許容損失としては, 周囲温度の上昇も 考え, ケース温度が 70℃ 時に 4 W 以上を目標とした。

このような高逆耐圧で、かつ出力を要する用途には、次に述べるように、三重拡散形が適しており、2SD190は三重拡散 PM 形シリ

とした。次に,出力を考えるに,一般のトランス結合回路の無ひず コントランジスタとした。 み最大出力 P₀は(1)式で示される。

$$P_0 = \frac{\eta}{2} (V_{CE} - V_{CE(\text{sat})}) \times I_C = \frac{\eta}{2} \frac{(V_{CE} - V_{CE(\text{sat})})^2}{R} \dots (1)$$

ただし、 $V_{CE(sat)}$: 2 I_{C} のときの飽和電圧

* 日立製作所武蔵工場

三重拡散形トランジスタの構造と
 高逆耐圧特性の定性的考察

三重拡散形トランジスタは、コレクタ領域の一部に同形不純物を 拡散し、コレクタ領域のコンダクタンスの改善をはかった拡散形ト

ランジスタであり、2SD190 はさらに表面を低温酸化膜にて安定化 を行ない, PM 形としたものである。第2図にその構造と不純物分 布を示す。図からわかるように、コレクタの基盤結晶に高比抵抗を 用いれば, NPiN 構造となる。 NPiN 構造において, コレクタ・ベ ース間に逆方向電圧がかかると、空乏層は電圧が低い間はベース・ コレクタ側両方にのびる。しかし、ベース側の濃度は図のように急 しゅんな分布をもっており,通常コレクタの濃度に比べ非常に高い ので、コレクタ印加電圧が高くなるに従い、空乏層はコレクタの i 層方向に一方的にのび出す。すなわち、小さな電圧ではグレード接 合に近似できるが, 高電圧ではほとんどステップ接合に近くなり, 高いコレクタの降伏電圧には i 層が重要な役割をもつ。

トランジスタのコレクタ接合のなだれ現象は、コレクタ逆方向印 加電圧によって生じた空乏層内の最大電界強度が、その結晶のなだ れ電界強度以上になったときに生ずる。この場合,印加電圧と電界 は空乏層内において(2)式の関係にあるので、ある一定電圧に対し て,空乏層が厚ければ厚いほど電界は小さく,したがってなだれ電 圧は大きくなる。

$$V = -\int^{xd} E(x) dx \quad \dots \quad (2)$$

このことは、コレクタの i 層比抵抗をできるだけ大きくし、また、 空乏層の伸びうる範囲でi層の厚さを厚くすればよいことを意味す る。しかし、コレクタの比抵抗をあまり高くし、 i 層厚さをあまり 厚くすると、コレクタコンダクタンスが小さくなりトランジスタの 飽和抵抗が大きくなる。また,電流増幅率の電流依存性が悪くなり, 出力(Pout)が小さくなるなどの悪影響があり限度がある。しかし, 三重拡散形では、拡散により不要部分のコレクタ抵抗を下げ、 i 層 の厚さを必要最小限に調整できるため,それだけ i 層比抵抗を高く でき、高い逆耐圧が得られるのである。ゆえに、NPiN 構造をもつ 三重拡散形の高逆耐圧特性を考えるとき,特にコレクタの i 層比抵 抗とその厚さの最適設計が必要である。

4. 高逆耐圧化の設計的考察

トランジスタの降伏現象は、その発生する場所により接合内部と 表面にわけることができる。また, 接合内部の降伏については, コ レクタ・ベース間のダイオード接合でおこるアバランシェ電圧(な だれ電圧)と、コレクタ接合の空乏層が高電圧のためエミッタ接合 までのびておこる Punch through 電圧 (突抜電圧) とが存在する。 トランジスタの降伏現象はそれら耐圧の最も低い値で規制されるた め、いずれに対しても十分な考慮が必要である。(1) アバランシェ 電圧に対しては、最適比抵抗を決定し、(2) Punch through 電圧に 対しては,空乏層の伸びを計算し,最適 i 層厚さを決定し,表面破 壊に対しては、低温酸化を行ない表面安定化をはかった。また、(3) トランジスタはエミッタ接地で使用するため、これら基本的な耐圧 のほかに BV_{CEO}, BV_{CEX}, BV_{CER} など回路条件できまる数々の降伏 電圧が存在し,同時に安全動作領域の考慮も必要である。

4.1 アバランシェ電圧と結晶比抵抗の決定

コレクタ逆耐圧は, 第一に基盤結晶の不純物濃度によってきまる アバランシェ電圧により支配される。アバランシェ降伏現象は、高 電界における空乏層内のキャリヤの増培現象によっておこり、気体 放電のタウンゼントの式に似て, 増培係数 M とイオン化係数 αi と の間には次式が成り立つ。

$\alpha_i = A \exp\left(-B\right)$	(E)			(5)	
シリコン結晶の場合,	A:	9×10^{5}	E :	電界強度	
	B:	1.8×10^{6}			

また,NPiN構造の場合,アバランシェに近い高電圧においては, 空乏層は i 層側に一方的に伸びておりほとんどステップ接合に近く なるので、空乏層内の電界、電圧分布は(6)、(7)式で近似できる。

$$E = E_M \left(1 - \left(\frac{x}{W} \right) \right) \qquad E_M = 2V_M / W \dots (6)$$

$$V = V_M \left(1 - \frac{x}{W} \right)^2 \qquad V_M = 8 N_d W^2 / 2 \kappa \varepsilon_0 \quad \dots \dots \quad (7)$$

ここに,	V_M :	最 大 電 圧
	E_M :	最大電界強度
	W:	空乏層厚さ
	N_d :	<i>i</i> 層のドナー密度 (const)
	κ:	比 誘 電 率
	ε_0 :	真空の誘電率

これは(8)式のポアソンの方程式を,空乏層内の両端でFV=E =0, また一方の端で V=0, 他方の端で V_M , 接合面で $E=E_M$ の境 界条件のもとで解くと容易に求めることができる。

ここに、 ρ: 空乏層内の電荷密度 (5),(6)式から(4)式の近似解を求めると

— 45 —

$$\int_{0}^{W} \alpha(E) dx = \int_{0}^{W} A \exp\left(-\frac{B}{E_{M}\left(1-\frac{x}{W}\right)}\right) dx \quad \dots (9)$$
$$\simeq \alpha(E_{M}) \frac{E_{M}W}{B} \left(1-\frac{\alpha(E_{M})}{A}\right)$$

ここに、 W: 空乏層の厚さ この積分値が1に近づけば、増培係数 Mは無限大となりアバラン シェ降伏を意味する。ゆえにアバランシェの条件式は次式となる。

 $\simeq \alpha \left(E_M \right) \frac{E_M W}{R} = 1$ (10) (10)式より(6), (7)式を用いて, E_M , Wを消去し, 結晶濃度 N_d と、アバランシェ電圧の関係を求めると、(11)式となる。

日

第4図 PiN 拡散接合の不純物分布と電界および電位分布

(11) 式より, アバランシェ電圧 V_M と, 結晶濃度 N_d の関係をグ ラフ化すると**第3**図となる。

これより V_1, V_2 は⁽⁴⁾,

これより *i* 層結晶比抵抗を求めると, *BV*_{CBO}: 600 V 以上を得る ために (4.3 参照), *N*_a: 4×10¹⁴, ρ: 13 Ω-cm (N 形) 以上となる。

4.2 空乏層による *i* 層厚さの設計

印加電圧と空乏層厚さの関係は,空乏層が下記条件にあるとして, ポアソンの方程式を適用することにより求められる。

- (1) 空乏層内において,不純物は完全にイオン化し,キャリヤは全然ない。
- (2) 空乏層内は電気的中性の状態にあり、境界は画然としている。

2SD190 の場合には, 第4図に示すように, ドナー不純物をもつ 高比抵抗基盤結晶にアクセプタ不純物を拡散したモデルとなる。ア クセプタ不純物分布を, (12)式の誤差関数に従うとすれば, 電荷密 度は $\rho(x) = q(C(x) - C_0)$ となるので, 空乏層内において (13)式の ポアソンの方程式が成立する。

 $C(x) = C_{s} \operatorname{erf} c \frac{x}{2\sqrt{Dt}} = C_{s} \left(1 - \operatorname{erf} \frac{x}{2\sqrt{Dt}}\right) \dots (12)$ ここに, D: 拡散 酸係数 x: 拡散時間 t: 拡散距離 C_{s}: 表面 濃度 $\Gamma^{2}V = -\frac{q\rho(x)}{\kappa \varepsilon_{0}} = -\frac{qC_{s}}{\kappa \varepsilon_{0}} \left(1 - \frac{C_{0}}{C_{s}} - \operatorname{erf} \frac{x}{2\sqrt{Dt}}\right) \dots (13)$ ここに, κ : 比誘電率 C_{0}: 基盤結晶濃度 ε_{0} : 真空の誘電率

接合 x_i を境として,空乏層内のベース側電界強度および電圧降下 を $E_1(x)$, $V_1(x)$, コレクタ側電界強度および電圧降下を $E_2(x)$,

したがって、この障壁電圧 (Barrier Potential) を V_M とすれば

 $V_M = V_1 + V_2$(21) コレクタ逆耐圧の高いトランジスタの構造とは, $E_2(x_j)$ の最大電 確度をできるだけ小さくして、ただれ電界確度における障壁電圧

界強度をできるだけ小さくして、なだれ電界強度における障壁電圧 V_M の大きな構造となる。すなわち l_2 厚さをできるだけ大きくとり 得る構造がよいことがわかる。第5 図に結晶比抵抗をパラメータと する印加電圧と空乏層との関係を示す⁽⁴⁾。 高逆耐圧 2SD190 では、 目標のコレクタ逆耐圧において伸びた空乏層の厚さ以上に *i* 層厚さ をとることが安全であり、これは第5 図から求めることができる。 *i* 層結晶比抵抗の上限は、飽和抵抗、二次降伏電圧、電流増幅率の コレクタ電流依存性などの要求特性から定められる。できる限り低 くとるがよいが、今 30 Ω -cm とすると、*i* 層厚さは次のようにして 求められる。N形結晶 30 Ω -cm の不純物濃度は、第3 図より 1.7× 10¹⁴ cm⁻³、コレクタ・ベース間逆耐圧の最小限の要求は 600 V であ るから (4.3 参照)

 $V_M/C_0 = 600/1.7 \times 10^{14} = 3.5 \times 10^{-12} \text{ (V} \cdot \text{cm}^3)$

 $x_i \ge 15 \mu$ にした場合に,空乏層は第5図より,65 μ のびることになる。したがって *i* 層厚さは最小限 65 μ 以上は必要である。また,第5図において,3.5×10⁻¹² (Ω ·cm³)付近では,空乏層厚さは

拡散深さ x_iの位置にほとんど無関係になっている。 このことはこの領域において空乏層は i 層側に一方的にのび,ステップ接合に近くなっていることを意味する。
4.3 コレクタ・エミッタ間最大電圧
以上コレクタ・ベース接合を主体とするアバランシェ電圧によるコレクタ逆耐圧の設計について述べたが、トランジスタはエミッタ

ホームラジオ用高逆耐圧シリコンパワートランジスタの開発

1681

第7図 エミッタ接地のトランジスタの逆耐圧の回路図

接地で用いるのが通常であり、さらにコレクタ・エミッタ間の降伏 電圧につき考慮する必要がある。エミッタ接地のコレクタ耐圧は、 二つの PN 接合にまたがるために、トランジスタの増幅作用が関係 し、ベース・エミッタ間の電位によっては、前述の耐圧より低くな る(第6図)。

その関係は,一般に

- ここに, BV_{CB0}: コレクタ・ベース間逆耐圧
 - BV_{CES} : ベース・エミッタ間を短絡したコレクタ・エ ミッタ間耐圧
 - BV_{CER} : ベース・エミッタ間を抵抗接続したコレクタ・ エミッタ間耐圧
 - *BV_{CEO}*: ベース・エミッタ間開放のコレクタ・エミッ タ間耐圧

いま, ベース・エミッタ間に *R*^B なる抵抗がはいっている場合のエ ミッタ接地のコレクタ・エミッタ間アバランシェ電圧を考える。 **第7**図の回路で Ebers and Moll⁽⁵⁾の式を使って, コレクタ・エ ミッタ間電流 *I*_{CE} を求めると次式となる⁽⁶⁾。

ここに, α_N: 順電流増幅率

$$a_1: \frac{KT}{qI_{EO}}$$

 $K_1: \text{ const.: 9}$
 $I_{ED}: エミッタ遮断電流$

ここに、 α₀: 低電圧における電流増幅率

*V*_B: ベース・コレクタ間のアバランシェ電圧

n: 定数, 三重拡散 NPN の場合 ~4

アバランシェ電圧は

(25) と (27) より

これより種々なるベース抵抗 R_B に対するコレクタ・エミッタ間耐 圧を求めることができる。

第8図は(28)式の正規化曲線と2SD190を用いて実測した結果を 示したものである。 V_M はそれぞれ I_c : 1mA の値であり, 2SD190 の場合, α_N : 0.91 (I_c : 1 mA), α_1 : 0.45 (I_c : 1mA), I_{E0} : 0.05 m μ A, $n: 4 \ge 0.05 \ m_{\mu}$ A, $n: 4 \ge 0.0$

いま, 2SD190 について, *BV*_{CEO}, *VB*_{CES}, *BV*_{CBO} の関係を求める と, (28) 式より

$$BV_{CEO} = BV_{CBO} \sqrt[n]{1 - \alpha_{N_0}}$$
 (B_B→∞).....(29)
 $BV_{CES} = BV_{CBO} \sqrt[n]{1 - \alpha_{N_0} \alpha_I}$ (R_B→0)(30)
(29), (30) 式より

1682

最大定格 (Ta=25℃)

項	日	記	号	単位	定	格
コレクタ・ペー	ス 電 圧	V_{CB}	o	v	300)
コレクタ・エミッタ電]	$ \in (R=3k \Omega) $	V_{CE}	R	V	300	ĺ
エミッタ・ベー	ス 電 圧	V_{EB}	80	V	3	ĺ
コレクタ	電 流	I_C		mA	100	
許容コレクタ損化	失 (<i>Tcase</i> =70℃)	P_C		W	4	
接 合 部 温	度	T_j		°C	150	ĺ
保 存 温	度	T_{stg}		°C	$-65\sim$	150

電気的定格(Ta=25℃)

項	目	記号	条	件	単位	最小值	標準値	最大值
コレクタ・	エミッタ電圧	VCER	$I_C = 1$	0 mA $R=3 \text{ k} \Omega$	V	300		
エミッタ・・	ベース電圧	Vebo	$I_E = 1$	$ \substack{ 00 \\ c = 0 } \mu A $	v	3.0		
直流電	充 増 幅 率	h _{FE}		=10 V y=50 mA		30	60	150
利得带	城 幅 積	f _T		= 50 V = 20 mA	Mc		25	-
ペース広	がり抵抗	rbb'		= 50 V = 20 mA	Ω		20	_
コレク	タ 容 量	Cob	V _{CB} =	=50 V	pF		5.0	
熱	氏 抗	θ_{j-c}			C/W			20

第10図 2SD190 の最大定格

600 V 以上に設計する必要がある。

また, (28), (30) 式より, エミッタ接地のコレクタ・エミッタ間ア バランシェ電圧を大きくするには、順方向電流増幅率は必要以上に 小さくできないから, 逆方向電流増幅率 αι のできるだけ小さいトラ ンジスタを設計するのがよいことがわかる。このことは、エミッタ

第11図 2SD190 の 静特性

5. 製 法

一般の三重拡散形の製法はほとんど同じであるが、特に PM 形と した。これは表面安定化が目的であり、表面降伏にも強くするため である。 コレクタ耐圧の降伏は内部破壊のほかに, PN 接合が表面 をきる近辺の表面にて起こる場合も実際には多い。これは表面部分 の電子濃度が外界のふん囲気に応じて増減した場合、この部分の電 界が内部と異なり,特に内部に比べて表面部分の電界が高くなるよ うな場合に、内部から低い電圧で降伏が起こる。たとえば、三重拡 散形の場合 (N+P+NN+) には, 高電圧の下に空乏層が伸び電界の主 として存在するN形側の表面に電子を誘起するようなふん囲気(た とえば水蒸気)では、降伏電圧が低下し、逆に表面に正孔を誘起する ようなふん囲気(たとえば酸素)の存在の下では高くなる。PM 法に よれば、Passivation 前の化学処理、Passivation 後の熱処理、エー ジングなどによりある程度表面状態を固定化できる。ただし、逆転 層が生ずると降伏電圧も低くなるので⁽⁷⁾, 逆転層の極力小さい表面 安定化膜を作ることが先決である。第9図に表面安定化後ウェハー および組立後の製品を示す。PM 形トランジスタの一般的な製法に ついては、別に報告済み(8)(9)なので省略する。

6. 特 性

2SD190の最大定格を第10図に、その静特性を第11図に示す。

側とコレクタ側をできるだけ非対称に設計することである。すなわ ち, ベースドリフトフィールドは大きく, コレクタとエミッタの電 極面積,および形状を非対称にし, i 層比抵抗を高く設計するのが よい。三重拡散形はこれら設計に適している。

また、2SD190を実際に使用した AC100V ラインホームラジオの出 力段の回路図と、その動作特性を第12図に示す。 直流電流増幅率 は20mAから100mAまではほとんどフラットであり、コレクタ・ エミッタ間電圧は300Vまで保証できる。ひずみ率10%以内で無 ひずみ最大出力1W,電力利得70dBで動作する。過電圧防止のた めに、シリコンカーバイトバリスタを並列につけて安全をはかる。

ホームラジオ用高逆耐圧シリコンパワートランジスタの開発

1683

第14図 二次降伏時エミッタ電流波形

— 49 —

7. 2SD 190 の安全動作領域

2SD190の用途は、従来トランスレス用真空管53C5などが使われていた高電圧出力増幅用であり、第12図の回路で、最大出力時にはコレクタ・エミッタ間に約200Vpp程度の逆電圧がかかる。これは増幅用途では従来の用途の5~10倍の高電圧であり、動作時の破壊が特に問題となってくる。このため本トランジスタには特に安全動作領域を検討し規定した。

③ Pc も電圧も規格内 であるがトランジスタ が二次降伏にはいり破壊するため,の三つに 大別される。①,② については,破壊防止, 破壊原因追求が比較的簡単であるが,③につ いては今まで各方面で種々の方法で研究が行 なわれているにもかかわらず,確定的な理論 は出ていない。ホームラジオの出力段増幅は A級増幅のためトランジスタによっては二次 降伏にはいることも考えられ,二欠降伏をも 考慮した安全動作領域を定めることが必要で ある。

筆者らは、2SD190 について順バイアス時 の二次降伏特性測定を、方形波パルスおよび カーブトレーサを使用した50c/s半波パルス を使用して第13図の回路で行なった。 測定 はいずれも単一パルスで行なっている。本測 定時のエミッタ電流 *i* と 波形は第14 図に示す とおりである。この図で明らかなように *T*=

1 ms の場合には二次降伏に突入する前に i_E がかなり変化するトラ ンジスタと,あまり変化しないトランジスタがあり,一方 T=0.2 ms の場合には i_E の変化率は小さくなり,トランジスタ間の差は小さく なる (ベース回路はほぼ定電流化されている)。

測定した二次降伏電圧電流特性は第15図に示すとおりである。

- 7.1 二次降伏特性
- パワートランジスタの動作時の破壊原因としては、①コレクタ損 失 Pc が規格以上になるため、②最大定格以上の電圧が加わるため、

この結果より明らかなように二次降伏電流電圧特性は (32)式の形で 表わすことができる。 $I_{s/b} = KV^{-x}$(33) ただし, X = 1.6······1.0~0.5 ms 方形波パルス X = 2.0·····50 c/s 半波パルス 一方測定時の i_E の変化と高温時の I_{CBO} との関係を求めると**第16**

140 r

日

第16図 二時降伏時の iE 変化率対 ICB0

第17図 過渡熱抵抗測定回路

14

図のようになり i E変化率が、高温時の I cBO と逆比例の関係にある トランジスタと,関係のないトランジスタがあることがわかる。こ の理由については以下で検討する。

7.2 2SD190の過渡熱抵抗

ここで使用した測定法はトランジスタのベース・エミッタ電圧 V_{BE} の温度依存性を利用した V_{BE} 法で,エミッタ電流 I_E をサンプ リングすることにより IE の小定電流時の VBE をオッシロスコープ で測定して、 V_{BE} の時間変化 ΔV_{BE} を求めたのである。本測定法の ブロックダイヤグラムを第17図に示す。別に恒温槽を使用してVBE

 $t \geq t \geq V_{CB} \times I_C + V_{BE} \times I_E \simeq V_{CB} \times I_C$

第19図はサンプリングされた波形の例であり、このような波形の 包絡線よりθ(t)を求めることができる。第20図にその結果を示す。 またこの測定時のくり返し周波数, サンプリング時間による測定値 の差は第21図に示すようにほとんどない。

7.3 二次降伏突入接合温度

7.2, 7.3 の測定結果, すなわち VcE=200 V の二次降伏突入電流 $I_{s/b}$ (t=1 ms) と 1 ms の $\theta(t)$ との関係から求めた二次降伏突入接 合温度 $T_{j_s/b}$ を第 22 図に示す。 T=1 ms の場合の $T_{j_s/b}$ は、 試料に よりほとんどシリコントランジスタの最大接合温度150℃以上であ ることがわかる。一方,二次降伏特性測定時の時間 T (パルス幅)を 変えた場合の一例として、 $T \doteq 1 \,\mathrm{ms} \ge T \doteq 0.5 \,\mathrm{ms}$ の $T_{js/b}$ を第23 図に示す。この結果から明らかなように、Tを変えてもTis/bが変 化しないトランジスタと、ある割合で T_{js/b} が変化するトランジス タの二つのグループに大別されることがわかる。この前者のトラン ジスタは、上に述べた IcBo が大きく二次降伏測定時の iE の変化の 小さいものに相当している。この二次降伏突入時のieの変化の小さ

対 $T_a(\simeq T_j)$ の測定をする。 この特性測定例は第18図に示すとお りである。これから明らかなように $\Delta V_{BE}/\Delta T = K_1$ はトランジスタ によってほぼ一定の値を示すが、試料間のK1値は約±5%の偏差 をもっている。

 $\theta(t)$ は ΔV_{BE} と加えたパワー P_c および $\Delta V_{BE}/\Delta T = K_1$ を用いて 次式より計算される。

----- 50 -----

いことは、トランジスタ単体としての h_{FE} の変化の小さいことであ り、これは接合部全体としての接合温度の上昇は小さいが、局部的 に温度が上昇して二次降伏に突入したと考えられる。このため時間 が短くなって、接合部の電流集中がはげしくなっても、 $T_{si/b}$ はあま り変わっていない。一方、前者のトランジスタは、 $T \Rightarrow 1 \text{ ms}$ の場合 には接合部の温度がほぼ均一に上昇するため、 h_{FE} が大きく変化し て二次降伏に突入しているが、時間が短くなると電流集中が起こっ て h_{FE} が変化せず二次降伏にはいっていると考えられる。

7.4 使用セットでのトランジスタの破壊と安全動作領域との関係

第12図に示したような実際のホームラジオにおいて、アンテナからたとえば電気ドリルなどによりパルス性の雑音がはいり、出力段のトランジスタの C・E 間に高圧パルスがかかり、トランジスタが 破壊するおそれがあるので、電気的にはほぼ同条件となるように回路を設定して、2SD190 に高圧パルスを加えるテストを行なった。 この結果、動作点が通常の値より電流値で約2倍に増加した点に移動するトランジスタがあることがわかった。この種のトランジスタ は、常温ではこのテストですぐに破壊することはないが、コレクタ 損失がセット設計値の約2倍に上昇するので、周囲温度が上昇した 場合や、長時間連続動作の場合には劣化または破壊現象をおこす。 この強制破壊テストの結果、上記理由で不良となるトランジスタは、

第24図 2SD190の動作安全領域

とがともに必要条件である。また二つの条件のクロスポイントが問題となるが、規格値としては余裕をとって最大電流値にクロスポイントをおき、第24図のように2SD190の安全動作領域を規定した。

8. 信頼度試験

第25図は1,000時間後の動作寿命試験結果を示したものである。 動作寿命試験は、高温放置、高湿放置試験に比べ、温度とともに高い電界と電流が加わるため、Passivatedトランジスタにとっては最もきびしい試験となる。 第25図は、標準放熱板 (Al 製 100×70×1.5 mm)付、周囲温度 T_a : 60℃における P_c : 3W (I_c : 30 mA, V_{CE} : 100 V)の結果である。(接合温度約 150℃) さらに、周囲温度 150℃ 放置の高温試験結果を第26 図に示す。両者とも 1,000 時間にて良好な結果を示している。

9. 結

言

ホームラジオ出力段用三重拡散形シリコントランジスタ 2SD190 の開発に伴い,その高逆耐圧化のための設計法,製法,特性,動作 結果について報告した。高逆耐圧,特に内部降伏電圧を高くするた

第22図に示した $T_{is/b}$ 特性のうち黒点印に相当し、これから明らかなように、破壊、非破壊の限界は $I_{s/b}$ だけできまるのではなく、二次降伏突入接合温度 $T_{is/b}$ が関係することがわかる。 以上述べた実験結果から、トランジスタを安全に使用するためには、の関係から二次降伏突入温度を求め、この温度の異は、動作時の接合温度がいかなる場合も最大接合温度 $T_i=150$ C以下であること、二次降伏突入電圧電流特性は(33)式で与えられるこ

立.

ホームラジオ出力段用の実装テストにも好結果を得たので量産を開 始した。今後よりいっそう信頼度を増すために,逆耐圧の向上をは かる所存である。

- (2) J. Maserjian: J. App. Phys. 30, 1613 ('59)
- (3) A.G. Chynoweth: Phys. Rev. 109, 1537 ('58)
- (4) H. Lawrence: B. S. T. J. March ('60)
- (5) J. J. Ebers and J. L. Moll: Proc. IRE. 42, Dec. ('54)
- (6) L. Van Biljon: Electronic Technology 37 ('60)

終わりに,当開発にあたっては日立製作所中央研究所徳山氏より 種々貴重な助言ご指導をいただいた。また,日立製作所武蔵工場, 吾妻,鈴木(茂),佐藤(隆),杉山各主任,明山,高橋,菊田,海保 各氏から終始積極的な協力を受けた。ここに厚くお礼申し上げる。 参考文献 (1) K.G. McKay: Phys. Rev. 94, 877 ('54) (7) B. Schwarz: J. Electrochem. Soc. 106, 871 ('59)
(8) 阿部, 鈴木仁: 電子材料 10月 ('64)
(9) 阿部, 鈴木仁, 徳山ほか: 日立評論 47 (昭 40-8)
(10) J. H. Simpson: Solid State Technology. Sept. ('64)
(11) Z. F. Chang and C. R. Turner, RCA Application Note SMA-21
(13) 昭和 39 年度電気通信学会全国大会講演論文集 S-5

(14) 磯崎,織田: 電子技術 5 & 6 ('65)

— 52 —