U.D.C. 621.314.63.032.4.018.12:621.3.018.3

サイリスタ式電力変換装置における

制御角のばらつきによる交流側異常高調波の検討

Study of Abnormal Harmonics Due to Firing Angle Errors in Static Power Conversion Equipment

要

点弧位相の制御を行なう変換装置の制御角にばらつきが生じた場合に発生する異常高調波を解析した結果に ついて述べる。

旨

これらの異常高調波の大きさは転流リアクタンス,制御角,制御角のばらつきの増加に対し,いずれも振動 的な変化をし,次数の高い高調波ほど変動の周期が短い。

1. 緒 言

サイリスタ変換装置の点弧制御角が不平衡になった場合,整流器の整流相数によって定まる高調波成分以外の奇数次および偶数次の 異常高調波分および直流分が発生する。特に直流分は整流器用変圧 器の直流巻線を直流励磁して鉄損を増加し,振動を起こさすなどの 悪影響がある。このような制御角のばらつきによる交流側での異常 高調波および直流分の発生状況に関しては,すでに二,三の論文が 発表されているが⁽¹⁾⁽²⁾種々のパラメータの影響については不明な点 が多い。ここでは,最も一般的に使用されている6相整流回路にお いて,相間の制御角が不平衡になった場合,交流側高調波電流に及 ぼす影響を定量的に検討した結果について述べる。

なお,制御角のばらつきの組合せは数多く考えられるが,ここで は代表的と思われるパターンを想定し,これについての数値例計算 を試みた。

2. 計算条件

2.1 計算の仮定

- (1) 制御角のばらつきとは無関係に直流電流は一定でリップル 分を含まない。
- (2) 整流回路と電源は3相平衡した転流リアクタンスで接続されている。
- (3) 電源電圧は3相平衡した正弦波である。
- (4) サイリスタ(SCR)各素子の損失は無視する。

2.2 計算方法

図1は、6相グレッツ結線整流回路において、重なり角を考慮した場合の交流側各相電流波形および直流電圧波形を示したものである。ここでは、この*ia*、*ib*、*ic*の各相電流波形をフーリエ展開して各高調波成分を求める。

2.2.1 フーリエ解析

図1の各相電流のような周期関数は次のようにフーリエ級数で 表わすことができる。

$$f(\theta) = \frac{1}{2}a_o + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta)$$

* 日立製作所日立研究所

ここで, a_o, a_n, b_n はフーリエ係数, a_o は直流分を示している。 図1に示す各相電流波形中,たとえば, a 相電流の半波は以下の ように表わされる。

 $i_{a} = \frac{\cos \alpha_{1} - \cos \theta}{\cos \alpha_{1} - \cos (\alpha_{1} + u_{1})} \bullet I_{d} \qquad (\theta_{1} \leq \theta \leq \theta_{2})$ $i_{a} = I_{d} \qquad (\theta_{2} \leq \theta \leq \theta_{3})$

970 日 立 評 論

VOL. 52 NO. 11 1970

表 1	(5) (6))オにおけ	スタ相雷流と	A. b. r. a	の関係
TX T	(0), (0)	/ MIC ADV)	る石伯电肌と	0 n, pn, 1 n V	ノ氏示

	а	相	b	相	с	相
θ_1	α1		$\frac{2}{3}\pi + \alpha_3$		$\left \frac{4}{3}\pi + \alpha_5 \right $	
θ ₂	$\alpha_1 + U_1$		$\frac{2}{3}\pi + \alpha_3 -$	$+U_3$	$\frac{4}{3}\pi + \alpha_5 +$	$+U_5$
θ_{3}	$\frac{2}{3}\pi + \alpha_3$		$\frac{4}{3}\pi + \alpha_5$		$2\pi + \alpha_1$	
θ_{4}	$\frac{2}{3}\pi + \alpha_3 +$	$-U_3$	$\frac{4}{3}\pi + \alpha_5 -$	$+U_5$	$2\pi + \alpha_1 +$	U_1
θ_5	$\pi + \alpha_4$		$rac{5}{3}\pi + U_6$		$\frac{\pi}{3} + \alpha_2$	
θ_{6}	$\pi + \alpha_4 + U$	74	$\frac{5}{3}\pi + \alpha_6 -$	$+U_6$	$\frac{\pi}{3} + \alpha_2 +$	U_2
θ7	$\frac{5}{3}\pi + \alpha_6$		$\frac{7}{3}\pi + \alpha_2$		$\pi + \alpha_4$	
θ_8	$\frac{5}{3}\pi + \alpha_6 +$	$-U_6$	$\frac{7}{3}\pi + \alpha_2 -$	$+U_2$	$\pi + \alpha_4 + U$	<i>I</i> ₄
q_1	α1		α3		α5	
q_2	$\alpha_1 + U_1$		$\alpha_3 + U_3$		$\alpha_5 + U_5$	
q_3	α_3		α_5		α_1	
q_4	$\alpha_3 + U_3$		$\alpha_5 + U_5$		$\alpha_1 + U_1$	
q_5	α_4		α_6		α2	
q_6	$\alpha_4 + U_4$		$\alpha_6 + U_6$		$\alpha_2 + U_2$	
<i>q</i> 7	α_6		α_2		α4	
q_8	$\alpha_6 + U_6$		$\alpha_2 + U_2$		$\alpha_4 + U_4$	
r 1	0		$\frac{2}{3}\pi$	5	$\frac{4}{3}$	π
<i>r</i> ₂	$\frac{2}{3}\pi$		$\frac{4}{3}\pi$		2 π	ŝ

表2 ばらつきのパターン例

各曲		制	征	(I	角	
^和 の SCR 素子番号	а	相	b	相	с	相
らつきのパターン	1	(4)	3	6	5	2
PA-1	α	α	$\alpha - \alpha'$	$\alpha - \alpha'$	$\alpha + \alpha'$	$\alpha + \alpha'$
PA-2	α	α	$\alpha - \alpha'$	$\alpha + \alpha'$	$\alpha + \alpha'$	$\alpha - \alpha'$
PA-3	α	$\alpha - \alpha'$	$\alpha - \alpha'$	$\alpha + \alpha'$	$\alpha + \alpha'$	$\alpha - \alpha'$

注: a: 基準の制御角

α':制御角のばらつき分

$$b_n = \frac{I_d}{\pi} \left(\frac{1}{\cos q_1 - \cos q_2} \left[\frac{\cos q_1}{n} (\cos n\theta_1 - \cos n\theta_2) + \frac{1}{n^2 - 1} \right] \right)$$

$$\cdot \left[n \left\{ \cos (\theta_2 - r_1) \cdot \cos n\theta_2 - \cos (\theta_1 - r_1) \cdot \cos n\theta_1 \right\} + \sin (\theta_2 - r_1) \cdot \sin n\theta_2 - \sin (\theta_1 - r_1) \cdot \sin n\theta_1 \right] \right] + \frac{1}{n} (\cos n\theta_2 + \cos n\theta_7 - \cos n\theta_3 - \cos n\theta_6) + \frac{1}{\cos q_3 - \cos q_4} \left[\frac{\cos q_4}{n} \right]$$

$$\cdot (\cos n\theta_4 - \cos n\theta_3) - \frac{1}{n^2 - 1} \left[n \left\{ \cos (\theta_4 - r_2) \cdot \cos n\theta_4 - \cos (\theta_3 - r_2) \cdot \cos n\theta_3 \right\} + \sin (\theta_4 - r_2) \cdot \sin n\theta_4 - \sin (\theta_3 - r_2) \cdot \sin n\theta_3 \right] + \frac{1}{\cos q_5 - \cos q_6} \left[\frac{\cos q_5}{n} (\cos n\theta_6 - \cos n\theta_5) \right]$$

$$i_{a} = I_{d} - \frac{\cos \alpha_{3} - \cos \left(\theta - \frac{2}{3}\pi\right)}{\cos \alpha_{3} - \cos \left(\alpha_{3} + u_{3}\right)} \bullet I_{d} \quad (\theta_{3} \leq \theta \leq \theta_{4})$$

ここで, Ia: 直流電流

2

αm: 図のアームmの制御角

*u*_m: 図1のアームmの整流開始時の重なり角 同様にして、 $\theta_5 \sim \theta_8$ の期間の a 相電流も求められる。これらの値 からフーリエ係数 a_n, b_n は(5), (6)式のようになる。(5), (6)式 中の θ_n , q_n , $r_n \ge a$, b, c 各相値との関係を示したのが表1である。 すなわち, (5), (6)式中の θ_n , q_n , r_n が表1の a 相の欄の値であれ ば求める an, bn は a 相電流に対する値である。(5), (6)式は n>1 に対する計算式であるが、n=0およびn=1についても同様な考え 方で求められる。

$$\begin{aligned} a_{n} &= \frac{I_{d}}{\pi} \left[\left(\frac{1}{\cos q_{1} - \cos q_{2}} \left[\frac{\cos q_{1}}{n} (\sin n\theta_{2} - \sin n\theta_{1}) - \frac{1}{n^{2} - 1} \right. \right. \\ & \cdot \left[n \left\{ \cos (\theta_{2} - r_{1}) \cdot \sin n\theta_{2} - \cos (\theta_{1} - r_{1}) \cdot \sin n\theta_{1} \right\} \\ & - \sin (\theta_{2} - r_{1}) \cdot \cos n\theta_{2} + \sin (\theta_{1} - r_{1}) \cdot \cos n\theta_{1} \right] \right] + \frac{1}{n} (\sin n\theta_{3} \\ & + \sin n\theta_{6} - \sin n\theta_{2} - \sin n\theta_{7}) + \frac{1}{\cos q_{3} - \cos q_{4}} \left[\frac{\cos q_{4}}{n} \right] \\ & \cdot (\sin n\theta_{3} - \sin n\theta_{4}) + \frac{1}{n^{2} - 1} \left[n \left\{ \cos (\theta_{4} - r_{2}) \cdot \sin n\theta_{4} \right. \\ & - \cos (\theta_{3} - r_{2}) \cdot \sin n\theta_{3} \right\} - \sin (\theta_{4} - r_{2}) \cdot \cos n\theta_{4} + \sin (\theta_{3} \\ & - r_{2}) \cdot \cos n\theta_{3} \right] \right] + \frac{1}{\cos q_{5} - \cos q_{6}} \left[\frac{\cos q_{5}}{n} (\sin n\theta_{5} - \sin n\theta_{6}) \right. \\ & + \frac{1}{n^{2} - 1} \left[n \left\{ \cos (\theta_{6} - r_{3}) \cdot \sin n\theta_{6} - \cos (\theta_{5} - r_{3}) \cdot \sin n\theta_{5} \right\} \\ & - \sin (\theta_{6} - r_{3}) \cdot \cos n\theta_{6} + \sin (\theta_{5} - r_{3}) \cdot \cos n\theta_{5} \right] \right] \\ & + \frac{1}{\cos q_{7} - \cos q_{8}} \left[\frac{\cos q_{8}}{n} (\sin n\theta_{8} - \sin n\theta_{7}) - \frac{1}{n^{2} - 1} \right] \\ & \cdot \left[n \left\{ \cos (\theta_{8} - r_{4}) \cdot \sin n\theta_{8} - \cos (\theta_{7} - r_{4}) \cdot \sin n\theta_{7} \right\} \\ & - \sin (\theta_{8} - r_{4}) \cdot \cos n\theta_{8} + \sin (\theta_{7} - r_{4}) \cdot \cos n\theta_{7} \right] \right] \\ & \dots (5) \end{aligned}$$

$$-\frac{1}{n^{2}-1}\left[n\left\{\cos\left(\theta_{6}-r_{3}\right)\cdot\cos n\theta_{6}-\cos\left(\theta_{5}-r_{3}\right)\cdot\cos n\theta_{5}\right\}\right]$$
$$+\sin\left(\theta_{6}-r_{3}\right)\cdot\sin n\theta_{6}-\sin\left(\theta_{5}-r_{3}\right)\cdot\sin n\theta_{5}\right]$$
$$+\frac{1}{\cos q_{7}-\cos q_{8}}\left[\frac{\cos q_{8}}{n}\left(\cos n\theta_{7}-\cos n\theta_{8}\right)+\frac{1}{n^{2}-1}\right]$$
$$\cdot\left[n\left\{\cos\left(\theta_{8}-r_{4}\right)\cdot\cos n\theta_{8}-\cos\left(\theta_{7}-r_{4}\right)\cdot\cos n\theta_{7}\right\}\right]$$
$$+\sin\left(\theta_{8}-r_{4}\right)\cdot\sin n\theta_{8}-\sin\left(\theta_{7}-r_{4}\right)\cdot\sin n\theta_{7}\right]\right]$$
$$\ldots(6)$$

11

なお,高調波は3相量の代りに対称分を用いて正相分と逆相分で 表わす(零相分はゼロ)。これにより三つの量の代わりに二つの量で 表わすとともに ▷人 または 人 ▷ 結線の変圧器の負荷側, 電源側と も同一の値で示すことができる。

直流分および各高調波の正相電流(In+)および逆相電流(In-)は, (7)式で計算される。

直流分:
$$I_{oA} = \frac{a_{oa}}{2}, I_{oB} = \frac{a_{ob}}{2}, I_{oC} = \frac{a_{oc}}{2}$$

正相分: $I_{n+} = \frac{1}{3} |I_{an} + aI_{bn} + a^2I_{cn}|$
逆相分: $I_{n-} = \frac{1}{3} |I_{an} + a^2I_{bn} + aI_{cn}|$ (7)

ここで,

 I_{oA}, I_{oB}, I_{oC} : a, b, c相における直流分 *I*an, *I*bn, *I*cn: a, b, c 相における第 n 次調波電流

$$a = \varepsilon^{j \frac{2}{3}\pi}, \quad a^2 = \varepsilon^{j \frac{4}{3}\pi}$$

2.3 計算条件

各アーム間におけるばらつきのパターンを表2に示すような三つ

のパターンの例について述べる。 なお, 4.において述べる例で, ばらつきが ±3°と言うことは, 制御角の基準値α=40°とすれば、各パターンにおいてそれぞれ以 下に示すような意味を有する。表2で①~⑥は各アームのSCR素 子の番号を示している。ここでは、SCR素子の点弧順序と同一番号 にしている (図1参照)。

.

サイリスタ式電力変換装置における制御角のばらつきによる交流側異常高調波の検討 971

 $(1=4=40^{\circ}, 3=37^{\circ}, 6=43^{\circ}, 5=43^{\circ}, 2=37^{\circ})$ ばらつきのパターン [PA-3] の場合の例:

 $1=40^{\circ}$, $4=37^{\circ}$, $3=37^{\circ}$, 6=43, $5=43^{\circ}$, $2=37^{\circ}$ 2.4 高調波含有率

4. で述べる高調波電流含有率とは各高調波成分の重なり角のある ときの基本波正相分電流に対する大きさの比で表わす。また, 直流 分含有率とは各相の直流分の基本波正相分電流(ピーク値)に対する 比で示す。すなわち、以下に示す定義で表わされる。

転流リアクタンスの大きさは、単位法(p.u)で表示される。この 場合の基準容量は E_{d_0} ・ I_d である。ただし、 E_{d_0} は無負荷直流電圧、 I_a は直流電流である。

3. 実 験 条 件

実験は、同相に接続された SCR 素子の制御角が等しいとき,すな わち, ばらつきのパターン [PA-1] の場合について, 基準制御角 α=40°で、これに対するばらつきを変えて行なった。この場合の転 流リアクタンス $[x_e] = 0.138$ p.u とした。

なお,実際の制御角のばらつきは, ±2°~±3°以内であろうが, ここでは定量的な関係をみるため、ばらつきが極端に大きい場合も 検討した。

4. 計算結果および実験結果

4.1 計算結果例と実験結果例との比較

相間のばらつきと高調波電流含有率の関係 [PA-3] 図 4

の発生状況は、ばらつきのパターン [PA-1] の場合は (6n-3) 次 調波が、パターン[PA-2]およびパターン[PA-3]の場合には (6n-3)次および偶数次調波が発生する。これらの異常高調波は, ばらつきに対し、一様の増加ではなく振動する。 振動の周期は高 次調波ほど短い。また,最も大きく異常高調波がでる所をみた場 合,次数の高いものほど異常高調波は小さい。

特に転流リアクタンスがゼロの場合は簡単な式で表わされるこ とが多く、たとえば、パターン[PA-1]の場合は(8)、(9)式で表 わされる。

(3_, 9_, 15_, ……および5+, 11+, 17+, ……)次は

図2は、ばらつきのパターン[PA-1]で転流リアクタンスが0.138 p.u の場合における実測結果と計算結果との比較例を示したもので ある。これらから明らかなように実測値と計算値はほぼ一致して いる。 4.2 計算結果 4.2.1 制御角のばらつきの影響 図2~図4に示すように、制御角のばらつきによる異常高調波

3

972 日 立 評

論

VOL. 52 NO. 11 1970

なお、(8)、(9)式に示すように、制御角にばらつきがある場 合, (6n±1)次の高調波は制御角のばらつきゼロのときに発生す るのと相回転順が逆のものも発生する。

4.2.2 転流リアクタンスの影響

4

転流リアクタンスと異常高調波の関係を制御角および制御角の

転流リアクタンスと直流分含有率との関係 [PA-2] 図 8

り大きくなっても(0.3 p. u 程度)異常高調波の大きさはあまり変 わらない。

4.2.3 直 流 分

図7は制御角40度, 転流リアクタンス0.15 p.u のとき, 制御

ばらつきをパラメータとして計算した例は図5,6に示すとおり
である。異常高調波は転流リアクタンスの増加に対し、一様の減
少ではなく振動する。振動の周期は高次調波ほど短い。この場合,
制御角が小さいほど転流リアクタンスがゼロの付近での ∂In ∂X
が大きい。また, 高調波次数が低次で通常の転流リアクタンスの
大きさの範囲では,制御角の大きいほうが高調波が大きい。一方,
ばらつきが ±3°以下では、低次調波は転流リアクタンスが、かな

角のばらつきにより発生する直流分を示したものである。直流分 は、ばらつきに正比例して増加し、各アーム間の SCR 素子のばら つきの状態により各相に含有される値が異なる。ばらつきのパタ -> [PA-2], [PA-3] においては b 相が最も大きく, ±3°のばら つきで基本波正相分電流(ピーク値)に対して2.7%発生している。 一方,転流リアクタンス(xe)と直流分との関係をばらつきのパ ターン[PA-2]で、制御角(α)をパラメータにとり、それぞれの サイリスタ式電力変換装置における制御角のばらつきによる交流側異常高調波の検討

制御角が ±3° ばらついたときの [PA-1] と 図 9 [PA-2]における高調波電圧の比較

制御角に対し、±3°ばらついたときの計算結果は図8に示すとお りである。

直流分は xe が大きくなるにつれて減少し,制御角が大きいほど 増大する。また, α が大きいほど, x_e による影響が少なく, $\alpha = 80^{\circ}$

以上を要約すると

発生する異常高調波の次数は、制御角のばらつきのパター (1)ンで決まり,転流リアクタンスの有無には無関係である。

異常高調波の大きさは、(a) ばらつき、(b) 転流リアク (2)タンス,(c)制御角を変えた場合,一様に増加または減少するの ではなく,あるきまった周期で変動する。変動の周期は次数の高 い高調波ほど短い。

973

の場合には、x_e=0~0.30 p.uの範囲に対して直流分は 0.03 p.u とほぼ一定でその含有率はあまり変わらない。

4.2.4 高調波電圧

以上の検討結果から、ある測定点における高調波電圧を(6n-3) 次の高調波の大きいばらつきのパターン[PA-1]と偶数次の高調 波の大きい [PA-2] について比較する。ここで、制御角のばらつ きは3度,転流リアクタンスは0.15 p. u,電圧を求める点は電源 からのリアクタンスが0.05 p.uの点とする。なお,高調波電圧 (V_n)は(10)式から求められる。

 $V_n = I_n \cdot n \cdot x \quad (p. u) \quad \dots \quad (10)$

ただし, In: 高調波電流 (p.u)

n: 高調波次数

x: 電源から求める点までのリアクタンス (p.u) 図9は、この場合のパターン[PA-1] と [PA-2] における高調 波電圧の比較例を示したものである。図から制御角が ±3°ばらつ いたときの電源側に誘起する(6n-3)次および偶数次の高調波電 圧は(6n±1)次調波のそれに比べて、低次調波では、はるかに小 さい値であることがわかる。

言 5. 結

6 相整流変換装置における制御角のばらつきが、交流側の高調波 電流に及ぼす影響を検討した結果について述べた。

(3) ただし,転流リアクタンスが小さい範囲では, (a) 制御角 が大きいほど、(b) ばらつきが大きいほど、異常高調波は大き い。また、ばらつきが小さい範囲では、(a)制御角が大きいほ ど、(b) 転流リアクタンスが小さいほど、異常高調波が大きい。 (4) ばらつきが通常存在すると考えられる2~3度の範囲では, 異常高調波により電源側に誘起する高調波電圧は, ばらつきがな い場合にも発生する(6n±1)次調波のそれに比べてはるかに小 さい。

(5) 直流分は、ばらつきが大きいほど、転流リアクタンスが小 さいほど、制御角が大きいほど大きく、特にばらつきに対しては 正比例の関係にある。

終わりに臨み本研究に対し、ご教示とご援助をいただいた日立製 作所日立研究所高林部長,奥田室長,日立工場近藤主任技師,大み か工場杉本主任技師に衷心より謝意を表する。

献 文 考 参

- (1) A.G. Phadke, J.H. Harlow: IEEE Trans. PAS-87/No.3 p. 873~883 (1968)
- (2) J. Reeve, P.C.S. Krishnayya: IEEE Trans. PAS-87/ No.3 p.883~893 (1968)

