棒鋼圧延におけるパス・スケジュール計算の機械化

Calculation of Pass Schedule for Rod Rolling by Electronic Computer

清 信* 水 古 雄* 賀 宗 Makoto Shimizu Muneo Koga

要 旨

棒鋼圧延は孔型ロールによる圧延であり, 圧延は各パスごとに断面積と形状を変えながら圧延される。この 圧延設備の計画時にまず決定すべきことは、多種類の成品につきおのおのを素材から何パスで圧延するか、各 パスでの断面積をいくらにするか、各パスの孔型の設計をどうすればよいかということなどであり、さらに、 圧延動力,温度計算も必要である。

これらの問題を解決するために実際のパス・スケジュールを詳細に分析し、その結果を数式化することによ り新しい計算方式を開発するとともに、電子計算機の使用により孔型決定および圧延動力、温度計算の機械化 を行なうことができた。

1. 緒 言

棒鋼圧延設備において, 圧延材は各スタンドにおける各パスごと に孔型ロールによって,その断面積と形状を変えながら圧延され, 1種類の素材から多種類の成品に成形される。素材と成品の断面積 が与えられて,途中の各パスの断面積を順次各成品について計算す ることによりパス・スケジュールが決定される。しかし、このパ

ス・スケジュール計算は熟練した一人の技術者が1個月近くかかる 膨大な繰返し計算であり, また, 孔型の設計は寸法決定の計算方式 が確立されていないところからアート (Art) であるといわれてきた ほどめんどうなものであるが、本計算方式の採用により、計算時間 の飛躍的な短縮が可能となり、計算精度も手計算に比べて著しく向 上した。

今回開発した計算方式は、実際のパス・スケジュールを詳細に分 析した結果を数式化し、パス数、断面積、孔型の決定を行ない、さ らに圧延速度, 圧延理論による圧延動力, 圧延温度などを電子計算 機により計算するものである。計算結果は各成品ごとに出力される ほかに、プロッタにより、

(1) フローシート

(2) スビードコーン

(3) 温度カーブ

が作成され、見積計算の迅速化と省力化に寄与している。以下にそ の概要について述べる。

2. パス・スケジュールの計算方式

2.1 パス数の決定

圧延材の各パスの減面率をnとすると第jパスでの減面率 n; は 次式で表わされる。

ここに、 A_{j-1} : 第jパスの入口断面積

A_j: 第 j パスの出口断面積

(1)式を第1パスから第 N パスまでについて書き直すと

$$1 - \eta_1 = \frac{A_1}{A_0}$$

ここに, A_f: 成品断面積

A₀:素材断面積

(3)式において、 $\eta_1 = \eta_2 = \dots = \eta_m$ とおき、 η_m について解くと次 式となる。

さて、各成品のパス数 Ni (i: 成品番号, 成品径の小さい順につけ る)は各成品の平均減面率が最小成品圧延の平均減面率 7m1 (この場 合,パス数とスタンド数は等しいので(4)式より計算できる)に最 も近くなるように決定する。すなわち、(4)式の左辺に 7m1を代入 してパス数につき計算し、これを ni と表わすと、

- ここに, A_{fi}: 成品番号 i の成品の断面積
- このとき、下記の条件を満足するものとする。
- (1) スタンド数が偶数であれば、パス数 N_i は n_i より大きくて 最も近い偶数となる。
- (2) スタンド数が奇数であれば、パス数 N_i は n_i より大きくて 最も近い奇数となる。

2.2 断面積の計算式

各パスの断面積を計算するために,まず各パスの減面率を決定し なければならない。実際のパス・スケジュールを分析して、減面率 を決定する因子として2個の係数 α , β を導入した(これを減面率) 配分係数と呼ぶことにする)。この2個の係数により成品番号 iの 成品の第 jパスの減面率 ηijを次式で表わす。 ここに, α_j: 孔型系列に関する第 j パスの減面率配分係数 β_j: 圧延過程に関する第 j パスの減面率配分係数 **ŋ**_i: 成品番号 i の成品の相当平均減面率 図1は本論文で取り扱う孔型の種類を示したものである。 各パスでの断面積を計算するために,(6)式を(3)式に代入する。

11

となる。(2)式の左右両辺を掛け合わせると次式が得られる。 *

日立製作所日立工場

640 日 立 評 論

VOL. 53 NO. 7 1971

図2 スクエアの形状

図3 ダイヤモンドの形状

2h 2h

$$(1 - \alpha_1 \beta_1 \overline{\eta}_i) (1 - \alpha_2 \beta_2 \overline{\eta}_i) \cdots (1 - \alpha_{Ni} \beta_{Ni} \overline{\eta}_i) = \frac{A_{fi}}{A_0} \dots (7)$$

いま、素材断面積 A_0 ,成品断面積 A_{fi} が与えられてパス数 N_i が (5)式に基づいて計算され、さらに各パスの孔型の種類が指定され れば、(7)式において $\bar{\eta}_i$ 以外は既知となり、これを解くことがで きる。

 $\overline{\eta}_i = F(N_i, A_0, A_{fi}, \alpha_1, \beta_1, \cdots, \alpha_{Ni}, \beta_{Ni}) \quad \dots \quad (8)$ この ŋiをあらためて(6)式に代入することにより ŋij が求められ るから、(3)式より第 jパスでの断面積は次式で表わすことがで きる。

 $A_{ij} = A_0 (1 - \eta_{i1}) (1 - \eta_{i2}) \cdots (1 - \eta_{ij}) \dots (9)$ 2.3 孔型の設計 2.3.1 孔型の形状と寸法

図4 オーバルの形状

図 5 ラウンドの形状 (b=h)

図6 スクエア→ダイヤモンド 圧延

図7 ダイヤモンド→スクエア 圧延

孔型の形状は図2~5に示すようにスクエアを正方形,ダイヤ モンドをひし形、オーバルを円弧、ラウンドを円でそれぞれ表わ した。孔型および圧延材の寸法は,

圧延材の断面積 (1)

(2)幾何学的条件

(3) 実際のパス・スケジュールによる実績値(孔型図面) を考慮して決定される(1)(2)。

2.3.2 スクエア→ダイヤモンド圧延

スクエア→ダイヤモンドの場合の圧延材と孔型の関係を示した のが図6である。ダイヤモンド(圧延材)の断面積は次式で表わさ れる。隅部 R の添字 b, h は幅方向, 高さ方向を表わし, 2b', 2h' は各図形の幾何学的な交点の寸法を表わしている。

幾何学的条件より,

従来の実績値より

12

$$\frac{b}{b'}=0.95$$
(13)
 $\frac{r_h}{a}=0.15$ (14)
である。頂角 20 については減面率との関数で表わす。

2.3.3 ダイヤモンド→スクエア圧延

ダイヤモンド→スクエアの場合の圧延材と孔型の関係は図7に 示すとおりである。スクエアの断面積 A は次式で表わされる。

図8 スクエア→オーバル圧延 図9 オーバル→スクエア圧延

図10 ラウンド→オーバル圧延 図11 オーバル→ラウンド圧延

従来の実績値からb'/b, r_h/aをそれぞれ下記の値にとってみた。 $\frac{b}{b'} = 0.95$ (18) $\frac{r_h}{a} = 0.12 \qquad \dots \qquad (19)$ 2.3.4 スクエア→オーバル圧延 スクエア→オーバルの場合の圧延材と孔型の関係は図8に示す とおりである。オーバルの断面積 A は次式で表わされる。 $A = 2R^{2}\cos^{-1}\frac{R-h}{R-r_{b}} + r_{b}^{2}\left\{\pi - 2\cos^{-1}\frac{R-h}{R-r_{b}}\right\}$ $-2(R-r_b)(b'-b)$ (20)

幾何学的条件より, $b' = \sqrt{2} a$ (16) 従来の実績値からこれを減面率の関数として表わした。

椿鋼圧延におけるパス・スケジュール計算の機械化 641

添字2: 圧 延 後

なお k₁~k₄は厳密には圧延材質,温度などの圧延条件によって 変わる定数である。

2.3.5 オーバル→スクエア圧延

オーバル→スクエアの場合の圧延材と孔型の関係は図9に示す とおりである。この場合はダイヤモンド→スクエアと同様であ り、断面積の値が異なるのみである。

2.3.6 ラウンド→オーバル圧延

ラウンド→オーバルの場合の圧延材と孔型の関係は図10に示 すとおりである。オーバルの断面積を表わす式は(20)~(22)式と 同じである。

従来の実績値からこれを減面率の関数として表わした。

$$\frac{h_2}{h_1} = 1 - k_3 \eta^{k_4} \qquad (26)$$

ここで、k₁~k₄は厳密には材質、温度など圧延条件によって変わる定数である。

2.3.7 オーバル→ラウンド圧延

オーバル→ラウンド圧延の場合の圧延材と孔型の関係は図11 に示すとおりである。ラウンドの断面積 A は次式で表わされる。

- (2) 最初に各成品につき、枝分かれに無関係に各パスでの断面 積を計算する。
- (3) 枝分かれを調べる成品の成品番号を i (i は 2 から成品数まで),枝分かれを調べる相手の成品番号を im とすると,最初 im は i-1 であり,枝分かれできないときは順次成品番号の若いものについて調べる。
- (4) 枝分かれを調べ始めるスタンド番号は、iとimについて お互いのパス番号および孔型の種類を第1スタンドから比 較して、パス番号および孔型の種類の一方が等しくなくな ったスタンドの番号とする。枝分かれは2パスごとにさか のぼって調べることとする。
- (5) 枝分かれするスタンドの番号は次の判定規準による。iと imについて枝分かれ後の平均減面率を比較し、その差の絶 対値が最初に 0.05 以下になったところを枝分かれするス タンド番号とする。
- 2.5 圧延速度の計算とスピードコーンの作成
- 2.5.1 圧延能力が与えられた場合の仕上圧延速度の計算 圧延能力をQ(t/h)とすれば次式が成立する。

ただし、
$$W = a^2 l_0 \gamma$$
(32)

あるいは,
$$W = A_f l_f \gamma = \frac{\pi}{4} d_f^2 l_f \gamma_f$$
(33)

あるいは, 直径を d として,

$$A = \frac{\pi}{4} d^2 \qquad \dots \qquad (28)$$

ただし,最終仕上パスでは冷間状態での収縮を考慮して次式の直 径とする。

d_f=1.012*d_c*.....(29) ここに, *d_c*: 冷間状態での成品径

2.4 フローシート作成の規準

フローシートの作成に際しては,実際のパス・スケジュール決定の手法を考慮して以下に述べる規準を設定して計算した。

2.4.1 圧延を行なわず飛ばすスタンドの決定方法

各成品の仕上スタンド番号 $(インプットデータ) N_f \geq (5)$ 式を 基にして計算されたパス数 N の差 4N は

2.4.2 孔型の選定方法

- (1) 各成品の圧延孔型は,最小成品径を得るパスの圧延孔型を 各スタンド番号に対応させて指定する。
- (2) 各成品を得るパスにおいて、最終仕上4パスはオーバル→ラウンド→オーバル→ラウンド圧延とする。
- (3) 飛ばして圧延するスタンドがあるためにダイヤモンド→ラ
 ウンド圧延となる場合はオーバル→ラウンド圧延とする。
 2.4.3 1モータ多スタンド駆動方式

1モータで多スタンドを駆動する場合は減面率の比が一定とな

ここに、N: 1時間あたりに圧延される素材の本数 (本/h)

- ξ:歩どまり
- W: 素材1本の重量 (kg)
- a: 素材断面の1辺の長さ(素材は角) (mm)
- *l*₀: 素材1本の長さ
- γ: 素材および成品の比重量 (kg/mm³)
- A_f: 成品の断面積 (mm²)
- *l*_f: 素材1本から圧延された成品の長さ (mm)
- d_f : 成 品 径 (mm)

圧延の間隔をZ(s)とすれば、次式が成立する。

$$\frac{Nl_f}{1,000v_f} + (N-1)Z = 3,600....(34)$$

ここに、 v_f: 仕上圧延速度 (m/s)

(31)式, (33)式, (34)式より N と lf を消去して vf を求める。

$$v_f = \frac{1,000 \, QW}{A_f \{(3,600+Z) \, W \xi - 1,000 \, QZ\} \gamma} \quad \dots \dots \dots (35)$$

(35)式において、Z=0、ξ=1とすると、連続圧延の条件より体 積速度一定として導かれる式と一致する。

2.5.2 仕上圧延能力が与えられた場合の圧延能力の計算 (35)式を Q について解いて求める。

$$Q = \frac{(3,600+Z) W\xi}{1,000 (W+A_f v_f Z)} A_f v_f \gamma \qquad \dots \dots \dots \dots \dots \dots (37)$$

あるいは、(36)式より求めることもできる。

$$Q=3.6 A_f v_f \gamma \qquad \dots \qquad (38)$$

- るため、そのスタンドでの減面率は最小成品径を得るパスの減面 率となる。
- 2.4.4 枝分かれするスタンドの決定
- (1) 各成品のパス・スケジュールはフローシート上で枝が分か れるように分岐している。これを以下枝分かれと呼ぶこと にする。

3. 圧延動力の理論計算

- 3.1 圧延理論式
- 柳本⁽³⁾は圧延加工における3次元変形に関して理論解析と実験を 行ない,直線状みぞ形および円弧状みぞ形を有するロールで圧延し た場合の圧延方向応力 σ_x,幅方向応力 σ_y,ロール半径方向に作用す る応力 pを求めている。さらに、これらの関係式を簡単化して⁽⁴⁾、

13

642 日 立 評 論

σxの平均値である平均圧延方向応力σxm と平均圧延圧力 pm が最大 せん断応力説で関係づけられるものとした。これは次式で表わさ れる。

3.2 圧延動力の計算式

棒鋼圧延においては、材料に幅広がりを生ずるのでこれを考慮し なければならない。すなわち、材料の幅は圧延方向に変化する。こ こでは圧延前と後の1/4幅 ym を基準にしてまず圧延トルクTを求 める。(39)式を入口面から出口面まで積分して、

ここに、 lm: 平均接触弧長の投影長さ

トルク T(kg·mm) が求まると圧延動力 L(kW) は次式で計算で きる。

 $L = \frac{T_n}{974.0}$ (41)

ここに、 n: ロールの回転数 (rpm)

なお圧延荷重についても柳本の基礎式を用いて計算した。

4. 圧延材の温度計算

4.1 スタンド間での温度変化

スタンド間において,ふく射および対流により微小長さ dl (m)の圧延材の温度 t (\mathbb{C})が微小時間 dz (h)の間に dt 変化したとすれば次式が成立する。

 $\alpha (t-t_a) s dl dz + 4.96 \times 10^{-8} \varepsilon (T^4 - T_a^4) s dl dz = A \gamma c dl dt$

ここに,	α:	対流熱伝達係数	$(kcal/m^2h^{\circ}C)$
	t_a :	空気の温度	$(^{\circ}C)$
	ε:	圧延材の放射率	
	s :	圧延材の周長	(m)
	T:	圧延材の絶対温度	(°K)
	T_a :	空気の絶対温度	(°K)
	A:	圧延材の断面積	(m ²)
	γ :	圧延材の比重量	(kg/m^3)
	<i>c</i> :	圧延材の比熱	$(kcal/kg^{\circ}C)$
			2011 201

時間 $0 \sim Z$ の間に圧延材の温度が $t_1 \sim t_2$ に変化したとして(42)式を積分する。

$$\int_{t_1}^{t_2} \frac{A \gamma c dt}{\alpha (t - t_a) s + 4.96 \times 10^{-8} \varepsilon s (T^4 - T_a^4)} = Z \quad \dots \dots (43)$$

したがって、スタンド間での温度変化 Ats は

 $\Delta ts = t_2 - t_1$(44) となる。対流熱伝達係数 α は Eckert⁽⁶⁾の空気に対する実験値⁽⁷⁾を 関数近似することにより求めた。

4.2 ロール間げきての温度変化

4.2.1 塑性変形による発熱

14

ロール間げきにおける圧延材の塑性変形は圧縮変形とせん断変 形とからなる。塑性変形に必要なエネルギーはモータから与えら れているが, A. Gelegi⁽⁸⁾は圧縮変形とせん断変形の変形エネル

図12 パススケジュール計算 フローチャート

4.2.2 ロールへの熱伝達

次に, 圧延材より上下ロールへの熱伝達を考える。W. Lueg と A. Pomp⁽⁹⁾ は鍛造およびプレスの場合の熱伝達と熱損失につ いて実験したが, これより熱伝達係数を求めると 5,000~10,000 kcal/m² h[°]C となる。 Pawelski⁽¹⁰⁾⁽¹¹⁾ は圧延速度が速い場合に はこの値は小さすぎるとして, 圧延材とロールとの間にスケール が存在する場合について解析し, 熱通過率 $K(\text{kcal/m}^2 \text{h}^{\circ}\text{C})$ を用 いてロールから圧延材までの内部の温度分布を求めた。この熱通 過率は平均接触弧長の投影長さを圧延材が通過するに要する時間 の関数として表わされているのが特徴で, 圧延速度が速い場合は 大きく, 遅い場合は小さい値となる。

圧延材より上下ロールへ伝達される熱量 Q,(kcal/h) は次式で 与えられる。

Qr=2lmbmK(tm-tr)(46) ここに、 lm: 平均接触弧長の投影長さ (m) bm: 平均接触幅 (m) K: 熱 通 過 率 (kcal/m²h℃) tm: 圧延前後の圧延材平均温度

*t*_r: *ロール*の内部温度 (℃)

したがって、ロール間げきでの温度変化 At, (℃) は次式で与えら

ギーの和がほぼ圧延動力に等しいことを確認している。したがって、 塑性変形による発熱量 Q_p (kcal/h) は (41)式の圧延動力 L (kW) に等しいとした。

れる。(発熱:正符号) $\Delta t_r = \frac{Q_p - Q_r}{3,600 A_2 v_2 \gamma_c}$ (47) ここに、 A_2 : 圧延材の出口断面 (m²)

v2: 圧延材の出口圧延速度 (m/s)

棒鋼圧延におけるパス・スケジュール計算の機械化 643

5. 計算手順と入出力データ

5.1 フローチャート

図12はパス・スケジュール計算のフローチャートを示したもの である。

5.2 入力データ

10

- (1) 素材に関するデータ
 - (a)素材角
 - (b) 素材長さ
 - (c)炭素量
 - (d) 素材の加熱炉出口温度
- (2) 成品に関するデータ
 - (a) 成 品 数
 - (b) 各成品の冷間状態での成品径
 - (c) 各成品の仕上スタンド番号

- (d) 各成品の仕上圧延速度または圧延能力
- (3) スタンド,その他に関するデータ
 - (a) スタンド数
- (b) スタンド間距離
 - (c) 各スタンドのモータ番号
- (d) 各スタンドのロール径(カラー径)
- (e) 各ロールの内部温度
- (4) 孔型および優先順位に関するデータ
 - (a) 最小成品径を得るパスの圧延孔型
 - (b) 優先順位(圧延せずに飛ばすスタンドの番号)
- (5) 冷却に関するデータ
- (a) 空気の温度
- 5.3 出力データ
- 各成品サイズにつき, 各パスごとに印字される。
 - (1) 断 面 積

率

表1 減 面

PRODUCT SIZE	THE	DIAMETER	OF	THE	COLD	ROUND	IN	MM)
THUR OUT OTHER		A AL ALIAN A LALL	~	* * * *	~ ~ LLL	TTO CTIN		_ · · A A · A /

STD No.	MTR No.	13.90	16.00	19.00	22.00	25.00	28.00	32.00	36.00	38.00	42.00	46.00	48.00	50.00
1	1	0.175	0.175	0.175	0.175	0.175	0.175	0.175	0.175	0.175	0.175	0.175	0.175	0.206
2	1	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.216
3	2	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.224	0.265
4	2	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.196	0.219
5	3	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.245	0.207	0.202	0.000
6	3	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.203	0.189	0.189	0.000
7	4	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.189	0.164	0.000	0.000	0.000	0.000
8	4	0.219	.0.219	0.219	0.219	0.219	0.219	0.219	0.189	0.189	0.000	0.000	0.000	0.000
9	5	0.225	0.225	0.225	0.225	0.225	0.225	0.000	0.000	0.000	0.000	0.000	0.000	0.000
10	6	0.197	0.197	0.197	0.197	0.197	0.197	0.000	0.000	0.000	0.000	0.000	0.000	0.000
11	7	0.225	0.225	0.225	0.225	0.142	0.143	0.202	00156	0.135	0.191	0.161	0.157	0.206
12	8	0.179	0.197	0.197	0.197	0.124	0.096	0.134	0.117	0.101	0.143	0.121	0.118	0.155
13	9	0.239	0.239	0.227	0.146	0.117	0.112	0.157	0.136	0.118	0.167	0.141	0.137	0.180
14	10	0.212	0.212	0.152	0.097	0.088	0.089	0.125	0.108	0.094	0.133	0.112	0.109	0.144
15	11	0.212	0.212	0.177	0.113	0.102	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
16	12	0.159	0.159	0.141	0.090	0.081	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
17	13	0.153	0.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
18	14	0.131	0.079	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
19	15	0.153	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20	16	0.122	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
RM	EN	0.201	0.202	0.207	0.193	0.180	0.190	0.200	0.184	0.177	0.192	0.177	0.170	0.200

表 2 断

積

(mm²)

PRODUCT SIZE (THE DIAMETER OF THE COLD ROUND IN MM)

面

STD No.	MTR No.	13.00	16.00	19.00	22.00	25.00	28.00	32.00	36.00	38.00	42.00	46.00	48.00	50.00
0		11,950.4												
1	1	9,859.7	9,859.7	9,859.7	9,859.7	9,859.7	9,859.7	9,859.7	9,859.7	9,859.7	9,859.7	9,859.7	9,859.7	9,486.5
2	1	8,026.9	8,026.9	8.026.9	8.026.9	8,026.9	8,026.9	8,026.9	8,026.9	8,026.9	8,026.9	8,026.9	8,026.9	7,438.5
3	2	6,020.7	6,020.7	6,020.7	6,020.7	6,020.7	6,020.7	6,020.7	6,020.7	6,020.7	6,020.7	6,020.7	6,227.6	5,466.7
4	2	4,704.0	4,704.0	4,704.0	4,704.0	4,704.0	4,704.0	4,704.0	4,704.0	4,704.0	4,704.0	4,704.0	5,006.1	4,269.1
5	3	3, 528. 3	3, 528. 3	3, 528. 3	3, 528. 3	3, 528. 3	3, 528. 3	3, 528. 3	3, 528. 3	3, 528. 3	3, 550. 8	3,729.7	3,996.2	0.0
6	3	2,756.7	2,756.7	2,756.7	2,756.7	2,756.7	2,756.7	2,756.7	2,756.7	2,756.7	2.831.4	3,025.9	3,242.1	0.0
7	4	2,067.7	2,067.7	2,067.7	2,067.7	2,067.7	2,067.7	2,067.7	2,236.0	2,304.8	0.0	0.0	0.0	0.0
8	4	1,615.5	1,615.5	1.615.5	1,615.5	1,615.5	1,615.5	1,615.7	1,814.1	1,869.9	0.0	0,0	0.0	0.0
9	5	1,252.1	1,252.1	1,252.1	1,252.1	1,252.1	1,252.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	6	1,005.7	1,005.7	1,005.7	1,005.7	1,005.7	1,005.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	7	779.5	779.5	779.5	779.5	863.2	861.4	1,289.7	1,532.0	1,617.5	2,291.5	2,538.4	2,733.4	3, 388. 9
12	8	626.0	626.0	626.0	626.0	756.1	779.0	1,116.3	1,353.3	1,453.7	1,963.8	2,231.7	2,411,7	2,864.9
13	9	476.4	476.4	483.8	534.7	667.9	692.1	941.2	1,169.1	1,282.0	1,636.2	1,917.1	2,080.6	2,348.0
14	10	375.2	375.2	410.5	482.7	609.4	630.6	823.7	1,042.5	1,161.5	1,418.9	1,702.0	1,853.3	2,010.9
15	11	295.5	295.5	337.9	428.0	547.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	12	248.4	248.4	290.4	389.3	502.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	13	210.4	223.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18	14	182.8	205.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19	15	154.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	16	135.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

15

644 日 立 評 論

表3 圧 延 動 力

PRODUCT NO 1 13.00 MARU

圧延動力

STD No.	MTR No.	К.	TIN	TNUT	TPD	THT	TFN	LD	BETA	RMA	EPSD	KM (kg/	ALPHA	PM (kg/	PMK	Р	TORK	RPM	kW
			(C)	(C)	(c)	(c)	(C)	(mm)		(mm)		<u>mm²</u>)		mm²)		(t)	(kg-m)	(r pm)	(kW)
1	1	2	1,130.0	1,119.9	3.6	30.8	1.4	63.7	0.65	217.8	1.3	6.41	0.56	7.65	1.19	71.3	4,593.	9.4	44.2
2	1	1	1,094.2	1,075.6	4.6	23.0	1.5	63.5	0.79	216.7	1.5	7.59	0.37	9.23	1.22	68.6	4,385.	11.6	52.1
3	2	2	1,058.7	1,043.2	8.7	23.5	3.4	65.8	0.61	225.9	2.6	9.79	0.31	12.79	1.30	101.2	6,672.	14.8	101.3
4	2	1	1,031.8	1,019.1	7.8	17.5	3.8	67.0	0.79	224.5	3.3	10.43	0.59	12.99	1.24	75.9	5,153.	19.1	100.8
5	3	2	1,013.2	1,003.7	10.7	14.5	4.5	55.1	0.61	206.6	5.3	12.04	0.31	15.94	1.32	81.4	4,491.	27.6	127.3
6	3	1	1,004.5	996.1	9.1	11.0	4.6	56.1	0.79	205.5	6.8	12.18	0.59	15.44	1.27	57.9	3,291.	35.5	120.0
7	4	2	998.9	992.1	12.0	9.7	5.5	48.7	0.61	210.9	10.3	13.47	0.31	18.51	1.37	64.1	3,121.	46.1	147.8
8	4	1	999.9	993.6	9.9	7.4	5.4	49.7	0.79	210.1	13.1	13.24	0.59	17.34	1.31	44.1	2,217.	59.3	134.9
9	5	2	1,001.5	969.3	11.8	6.4	7.1	41.1	0.61	189.0	20.9	15.19	0.58	20.36	1.34	45.1	1,874.	85.0	163.6
10	6	1	981.8	975.6	9.6	5.0	6.7	42.2	0.79	188.2	25.6	14.63	0.82	18.49	1.26	30.8	1,329.	106.3	145.0
11	7	2	986.9	981.4	12.2	4.6	7.8	36.7	0.61	191.3	37.6	15.64	0.58	21.66	1.39	33.9	1,257.	134.9	174.1
12	8	1	996.8	991.7	9.8	3.6	7.4	37.8	0.79	190.7	46.0	14.89	0.82	19.35	1.30	22.8	878.	168.5	152.0
13	9	3	1,005.2	991.9	14.1	3.7	14.9	40.7	0.28	193.0	78.3	16.78	0.97	22.18	1.32	26.7	1,122.	218.9	252.1
14	10	1	1,017.2	1,012.5	11.4	3.0	15.0	43.0	0.79	192.8	101.7	15.76	1.16	19.17	1.22	18.2	823.	278.1	235.1
15	11	3	1,035.8	1,022.1	11.5	2.4	12.3	32.5	0.30	174.2	141.4	15.96	0.99	21.01	1.32	15.4	516.	390.8	206.9
16	12	4	1,043.5	1,039.8	7.1	1.8	8.9	33.4	0.40	173.0	151.1	14.03	1.18	16.64	1.19	8.5	297.	468.1	142.7
17	13	3	1,054.1	1,039.6	7.1	1.8	12.0	26.9	0.22	155.4	240.1	14.64	1.25	17.32	1.18	9.0	255.	615.4	160.9
18	14	4	1,056.9	1,053.0	5.5	1.4	10.0	30.8	0.36	154.0	246.5	13.50	1.33	15.11	1.12	5.9	192.	714.8	141.1
19	15	3	1,067.1	1,063.5	7.0	1.5	12.4	24.9	0.22	156.1	351.6	14.47	1.25	17.34	1.20	7.2	188.	832.8	161.1
20	16	4	1,081.5	1,078.0	4.8	1.1	10.0	28.5	0.35	154.8	355.9	12.99	1.35	14.48	1.12	4.5	135.	956.0	132.8

Finishing	13.0ϕ	16.0ϕ	19.0ϕ	22.0¢	25.0ϕ	28.0¢	32.0¢	36.0ϕ	38.0ϕ	42.0 ¢	46.0 <i>\phi</i>	48.0¢	50.0¢
Stand No.					-						Tunusin (1)		
0	P		_			10.00.0		-	_	_			
	X												X

0 10	20	30	40	50	60	70	80	90	100

1,300

図13 フロ ージート

100.0_C

16

図15 温度カーブ

椿鋼圧延におけるパス・スケジュール計算の機械化 645

(2) 減 面 率
(3) 圧 延 速 度
(4) 圧延能力 ただし、これは各成品につき印字される。
(5) 孔型および圧延材の形状寸法
(6) 圧延温度、変形抵抗、圧延動力
以上の結果のほかに、プロッタにより
(1) フローシート
(2) スピードコーン
(3) 温 度 カーブ

が出力される。

10

6. 計算例と結果の検討

6.1 おもな入力データ

成品径 13.0~50.0 mm Ø, スタンド数 20, 素材 110 ♥×1,250 mm l, 0.1% C, 加熱炉出口温度 1,130℃, 仕上圧延速度 15.5~3.0 m/s

6.2 出力データ

表1は減面率,表2は断面積,表3は圧延動力を示したものである。X-Y プロッタにより作成されたフローシートは図13に,スピードコーンは図14に,温度カーブは図15に示すとおりである。

6.3 圧延動力の検討

図16は孔型系列別の圧延動力の計算値と実測値を比較したもの である。計算値のうち約90%の点が実測値の80~120%の間にあり 比較的よく一致している。スクエア→ダイヤモンド→スクエア系列 は,実測値より低めであり,ラウンド→オーバル→ラウンド系列とス クエア→オーバル→スクエア系列は実測値より高めの傾向にある。

7. 結 言

- (1) 棒鋼圧延における実際のパス・スケジュールを分析し、その結果を数式化することにより新しいパス・スケジュールの計算方式を開発した。
- (2) 電子計算機の使用により、従来多くのマン・アワーを必要 とした圧延動力、温度計算を含めたパス・スケジュール計 算の機械化を行なった結果、見積計算の省力化と迅速化を 進めることが可能となった。
- (3) 圧延動力の計算値と実測値は比較的よく一致している。

参考文献

- (1) 菊地: 富士製鉄技報 5, 3, p. 285 (昭 31)
- (2) 菊地: 富士製鉄技報 5, 4, p. 397 (昭 31)
- (3) 柳本: 日本機械学会論文集 28, 178, p. 637 (昭 37-6)
- (4) 柳本ほか: 日本機械学会論文集 33,249, p.826(昭42-5)
- (5) 志田: 塑性と加工 10-103, 610 (昭44)
- (6) Eckert: Introduction to the Transfer of Heat and Mass (1950)
- (7) 伝熱工学資料: 日本機械学会 p.37 ((1966)
- (8) A. Gelegi: Leistungbedarf der Walzenstraßen, Warzwerks- und Schmiedemachinen p. 675 (1961)
- (9) W. Lueg 13. 5: Stahl und Eisen 61, 39, p. 881 (1941)
- (10) O. Pawelski: Stahl undEisen 89, p. 1146 (1969)
- (11) O. Pawelski: Archin für das Eisenhüttenwesen 40, 10, p. 821 (1969)

	第 33 巻	日	立	第7号	
		目	次		
・グ ラ ・解	フ / シ ー ズ ン 入 り に 説 / エレクトロニクスの散歩	新 戦 力 道〈第6回〉	・インタビュー /	IEEE ショーから帰国 日立製作所宣伝部 伊藤 満	して
• 12	ポ/ "第9回東京国際見本 士魂商才 プラス コン	市"開く ピュータ	 ・湿害追放! ・P R 	ドライに住む ベコー ナ	ι -
	早岐茶市 今に残る	物々交換	• ホ ー ム	サイエン	ス
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	発行所 日 立	評 論 社	東京都千代田区丸のP 郵便番号 100	为一丁目5番1号	
	取次店 株式会社 オ	ーム社書店	東京都千代田区神田釒 郵便番号 101	帛町3丁目1番地	
			振替口座東了	20018番	

