OF ケーブルの 浮力 延 線

Application of a Flotation Method to Pulling of Oil-filled Cables

末吉 昭 典* 広 林 昭** 吉 通*** 博 H Akinori Sueyoshi Hiroaki Hayashi Hiromichi Yoshida

旨 要

500kV1×1,200mm²および66kV1×1,000mm²ビニル防食アルミ被OFケーブルを布設するにあたり、あら かじめ水を満たした管路内にケーブルを引き入れる浮力延線法を適用し、引入れ張力を従来の滑材延線法に 比べてそれぞれ57%および85%に減少させることができた。検討の結果、浮力延線の効果はケーブルの摩擦 係数および見掛け比重に大きく影響され、ポリエチレンやクロロプレン防食よりビニル防食のほうが、鉛被 よりアルミ被のほうが、導体サイズの小さいほうが、また超高圧ケーブルのほうが効果は大きく現われるこ とがわかった。また、この延線法の適用によりマンホールおよびケーブル接続個所を減らすことも可能であ り、その経済的効果はじゅうぶんに期待できる。

1. 緒 言

あらかじめ水を満たした管路内にケーブルを引き入れる浮力延 線法を採用すれば引入れ張力を減少させることが可能であり、次 のような効果を期待することができる。第一に、ケーブル布設に おいて引入れ張力または側圧が許容値を越えるような場合に、こ れを減少させることができる。第二に、ケーブルの布設可能長さ が長くなりスパン長を伸ばしうるため、マンホールおよびケーブ ル接続個所を減少することができる。さらには、ケーブル長が長 くなると傾斜地布設されたケーブルの熱伸縮によるすべり落ち現 象が起こりにくくなることも考えられる。 昭和44年2月に九州電力株式会社新小倉一日明線へ66kV 1× 1,000mm²アルミ被OFケーブルを布設するにあたってこの浮力延 線法を採用し、その効果を確認した。) さらに最近の超高圧化に伴 いケーブルの絶縁層が厚くなって見掛け比重が小さくなると、浮 力延線の効果はいっそう大きくなるものと考えられ、昭和45年4 月に東京電力株式会社東東京変電所へ大容量地中送電技術開発研 究用500kVアルミ被OFケーブルを布設するに際し、再び浮力延 線法を適用し検討を行なった。ここでは、これらの浮力延線結果 ならびに浮力延線効果に及ぼす要因とその影響について検討した 結果を述べる。

2.1 浮力延線方法

図1にここで行なった浮力延線法の状況を示す。すなわち、管 路内にあらかじめ水を満たしてケーブルを引き入れるため、管路 の出入口部には特殊な水止め装置と給排水用ホースを取り付ける。 水止め装置にはゴムシートパッキンを使用した。本装置のケーブ ル通過に対する拘束力は、66kVの場合約100kgあったが500kVの 場合は改良して約10kgと非常に小さかった。また、浮力延線では 滑材を使用しないが、そのほかは普通の引入れ方法と全く同じで ある。

2.2 布設ケーブルおよび延線条件

布設ケーブルとそのおもな諸元を示したのが表1である。これ より見掛け比重は超々高圧になるとかなり小さくなることがわか る。ケーブルの引入れは66kV OFケーブルの場合内径125mmの石綿 セメント管路3スパン(各260m程度)について、また500kV OFケ ーブルの場合は同じく200mmの石綿セメント管路1スパン(169m) について行なった。延線条件は浮力延線のほかに通常の滑材延線 も行ない比較した。さらに66kV OFケーブルの場合は滑材を使用 しない無滑材延線時の張力を、また 500kV OFケーブルの場合は浮 力延線終了後に管路内の水を除去し、水濡れ状態でわずかに引い たときの張力を測定した。なお延線速度は5~6m/minで、滑材延 線時に用いた滑材にはタルクとグリセリンの混和物を使用した。

2. OFケーブルの浮力延線結果

66kVおよび 500kV OF ケーブルを布設するにあたり浮力延線法 を適用し、従来の延線法による結果と比較検討を行なった。

九州電力株式会社 * 東京電力株式会社 * * ***日立電線株式会社研究所

84

表1 布設ケーブルとそのおもな諸元

OFケーブルの浮力延線 379

2.3 測 定 結 果

2.3.1 引入れ張力

管路出口で測定したワイヤロープの引入れ張力記録チャート例 は図2に示すとおりである。引入れにおいてはワイヤロープおよ びケーブルの伸び縮みなどが常に繰り返されるため図のように小 さな周期の張力変動がみられるが、浮力延線ではこの変動幅が滑 材延線の場合に比べて小さくなっている。この変動張力の最大値 を引入れ張力としてプロットしたのが図3である。これらの結果 における浮力延線時の張力減少率は次のようになる。

(1) 66kV OFケーブルの場合

浮力延線時の張力は滑材延線時の85%に、また無滑材延線時の75%に減少した。

(2) 500kV OFケーブルの場合

浮力延線時の張力は滑材延線時の57%へと大幅に減少した。 また,浮力延線終了後に水および水止め装置を除去し,管内水 濡(ぬ)れ状態で約1m引いたときの張力は,滑材延線時とほぼ 同程度まで上昇した。

なお,66kV OFケーブルの場合も水止め装置による拘束力が 10kg程度と小さかったなら、浮力延線による効果はもう少し大 きく現われたものと思われる。

2.3.2 水 圧

水圧は後述するように引入れ張力にも多少影響するし、またケ ーブル内絶縁油圧より大きくなることは万一のことを考えると好 ましくない。管路出入口部に取り付けた圧力計による測定結果に よると、引入れ中の水圧上昇値は最大0.3~0.4kg/cm²であった。 実際にケーブルに加わる圧力は、この圧力上昇値にさらに地面か らの高さおよび管路の高低差による水圧分が加わった値である。

2.4 引入れ張力計算値とケーブルの摩擦係数

引入れ張力を計算するにあたり,まず計算手順を次に述べる。 手順(1)通常用いられるRifenburgの式⁽³⁾によりケーブル先端部の張 力を計算する。浮力延線の場合はもちろんケーブル重量には水 中での値を用いる。なお,管路に変曲点を持つ曲線部がある場 合は図4のようにケーブルが全く管壁に触れない部分を生ずる ので,変曲点の前後においてそれぞれ次式の補正角を差し引い て計算する必要がある⁽⁴⁾。

ここに、α:補正角

D:管路内径

d:ケーブル外径(ワイヤロープの場合はロープ外径)

R₁, R₂: それぞれ変曲点前後における管路曲線部の曲 率半径

手順(2)さらに浮力延線の場合のケーブル先端張力は、水圧による 分だけ加算される。なお、水圧による力は次式で計算される。

ここに、P:水圧による力

p:水圧

d:ケーブル外径

手順(3)管路出口におけるワイヤロープの引入れ張力は、さらにケ ーブル先端から管路出口に至るワイヤロープによる摩擦の影響 を加えたものである。これは前述のRifenburgの式をそのまま ワイヤロープの場合に適用して計算できるが、曲線部において は一般に側圧に比べてロープ重量を無視できるので計算式は次 のように簡単になる。すなわち曲線部1個所に対する張力の増 加は次式で表わされる。

図4 曲線管路の変曲点におけるケーブル通過状況

85

380 立 評 論 H

VOL. 54 NO. 4 1972

表2 ワイヤロープの摩擦係数(対石綿セメント管)

	条件	管内面	面 摩 耗
管路条件		なし(直線部に相当)	あり(曲線部に相当)
乾	球	0.51~0.55 (0.53)	0.66~0.69 (0.68)
水濡	きれ	0.46~0.49 (0.48)	0.64~0.66 (0.65)

)内数字値は平均値を示す。 注:(1)(

> (2) 滑材延線の場合は管路条件「乾燥」の値を、また浮力延線の場合は「水濡れ」 の値を用いる。

今回の引入れにおけるケーブル摩擦係数 表3

件	-	5	-7	* ル	66kV OFAZV	500kV OFAZV
浮	カ		延	線	0.35~0.42	0.37~0.40
滑	材	•	延	線	0.33~0.40	0.38~0.40
水	濡	n	延	線		0.37
無	滑	材	延	線	$0.36 \sim 0.45$	

T₂:曲線部出口張力

μ:ワイヤロープの管路曲線部における摩擦係数

θ:管路曲線部の曲り角

(変曲点のある場合は(1)式の補正角を考慮) 手順(4)浮力延線の場合は、管路出口においてケーブル先端が水止 め装置に入るときに抵抗力が加わり、この瞬間にケーブル先端 張力が最大値を示す。

以上の手順により引入れ張力を計算するにあたり、管路入口部 におけるケーブルのバックテンションを66kVの場合100kg, 500kV の場合150kgとし、浮力延線においてはさらに前述の水止め装置 による拘束力を加算した。また、ワイヤロープの外径を18mm,重 量を1.2kg/m(水中重量0.9kg/m)とした。石綿セメント管に対す るワイヤロープの摩擦係数は、別途短尺ロープを用いて測定した 結果表2のとおりであり、ここではその値を用いた。以上の条件 で種々のケーブル摩擦係数について張力計算を行なった。図5に は前述の図3に対応する計算値のうち実測値に最も近くなるよう な摩擦係数での計算結果を示した。逆にこれらから、今回の引入 れにおけるケーブルの摩擦係数を求めることができ、その結果を 表3に示した。

ケーブルの見掛け比重が小さいほど(1に近いほど)大きい。

	W F	<u>s-1</u> _	$1 - \frac{1}{2} \dots$			(1)
	w L	\$	s			(4)
こに、	101.	:空気中の	のケーブル	単位長重量	計(滑材延編	泉時)

wF:水中のケーブル単位長重量(浮力延線時)

s:ケーブルの見掛け比重

OF ケーブルの見掛け比重はおもに導体サイズとその材質、シ ース材質,ケーブルの電圧階級などによって異なるが、それらと の関係を示すと図6になる。図から、鉛被よりアルミ被のほうが、 超高圧ケーブルのほうが、銅導体よりアルミ導体のほうが、また 導体サイズの小さいほうが見掛け比重の小さいことがわかる。

3.2 ケーブルの摩擦係数

浮力によってせっかく重量が減少しても、逆にケーブルの摩擦 係数が増せばその効果は相殺されてしまう。このように浮力延線 効果に大きな影響を与える摩擦係数は、ケーブル表面(防食層)

3. 浮力延線の効果に及ぼす要因とその検討

浮力延線の効果に影響を及ぼすおもな要因はケーブルの見掛け 比重とその摩擦係数であり、そのほかに引入れ管路条件などがあ る。以下、これらの要因による影響について検討を加える。 3.1 OFケーブルの見掛け比重 ケーブルの見掛け比重と、空気中重量に対する水中重量の比と の間には次式の関係があり、浮力によるケーブル重量の減少率は

および管路の材質ならびにそれらの表面状態によって異なる。こ こでは、ビニル、ポリエチレンおよびクロロプレン防食層を有す るケーブルと石綿セメント管との間の摩擦係数につき、今回の実 験も含めて長尺あるいは短尺ケーブルによって種々実験を行なっ た結果から判断して妥当と思われる値を示すと表4のようになる。 なお、表には、管路内が乾燥および水濡れ状態(いずれも滑材な し)の場合に対する値も記載した。これより、ビニル防食の場合

86

防食層延線条件	ビ ニ ル (ZV)	ポリエチレン(ZE)	クロロプレン(ZN)
浮力延線	$0.35 \sim 0.42(0.39)$	0.41~0.46(0.44)	0.45~0.49(0.47)
滑材延線	0.35~0.40(0.38)	0.36~0.40(0.38)	0.34~0.38(0.36)
乾燥延線	0.46~0.49(0.48)	0.45~0.49(0.47)	0.39~0.43(0.41)
水濡れ延線	$0.36 \sim 0.40(0.38)$	0.42~0.47(0.45)	0.46~0.51(0.49)

表4 ケーブルの摩擦係数(対 石綿セメント管)

注:()内数値は平均値を示す。

は滑材延線時と浮力延線時でケーブルの摩擦係数にほとんど差は みられないが、ポリエチレン防食の場合は浮力延線時のケーブル 摩擦係数が滑材延線時に比べて約1.16倍に、クロロプレン防食の 場合は同じく約1.3倍に大きくなっていることがわかる。

3.3 浮力延線効果の計算例

ここでは図7に示すような管路形状を例にとり、滑材および浮 力延線の場合について、管路長、曲線部位置、曲り角および曲率 半径を種々変えた場合の管路出口における最終引入れ張力を計算 し検討を加えた。ここで浮力延線の評価は、滑材延線張力 T_L に 対する浮力延線張力 T_F の比率 T_F/T_L (以下これを,浮力 - 滑材 張力比と呼ぶ)をもって行なうことにする。

次に、上記管路における引入れ張力 T_L および T_F の計算式を 示す。

(1) 滑材延線の場合

計算例に用いた管路形状 図7

 $T_1 = T_B + \mu_L w_L l_1$

 $T_2 = T_1 \cosh(\mu_L \theta) + \sqrt{T_1^2 + (w_L R)^2} \sinh(\mu_L \theta)$(5)

 $T_L = T_2 + \mu_L w_L l_2$

- ここに、 T_B : バックテンション
 - μL: 滑材延線時のケーブル摩擦係数
 - wL:滑材延線時のケーブル単位長重量
 - R:曲線部の曲率半径
 - θ :曲線部の曲り角(ラジアン)
- (2) 浮力延線の場合

 $T_1 = T_B + \mu_F w_F l_1$

 $T_2 = T_1 \cosh\left(\mu_F \theta\right) + \sqrt{T_1^2 + (w_F R)^2} \sinh\left(\mu_F \theta\right)$ (6)

 $T_F = T_2 + \mu_F w_F l_2 + P + T_K$

- ここに、µF:浮力延線時のケーブル摩擦係数
 - wF: 浮力延線時のケーブル単位長重量
 - P:水圧力((2)式参照)
 - TK:ケーブルが出口部水止め装置に入るときの抵抗

力

計算に用いたケーブルの種類および諸数値は表5に示すとおり である。また、(6)式における T_K を50kg、浮力延線時の水圧を0.5 kg/cm²とした。なお、管路は石綿セメント管であるとし、それに 対するケーブル摩擦係数は前述(表4)のとおりである。

図8は曲線部曲り角に対する浮力 - 滑材張力比の計算例であり、 図9は管路長をパラメータとした曲線部位置に対する浮力 - 滑材 張力比の計算例である。これより、見掛け比重が小さく、また浮 力延線時のケーブル摩擦係数の増加率が小さいケーブルほど浮力 延線効果は大きく現われることが確認される。また、OFZNケー ブルでは浮力延線がかえって逆効果になっている。次に、管路曲 線部の曲り負および位置に対する浮力延線効果との関係をみると, そこには多少の変化がみられるだけであり、また、管路長が長く なるほど浮力延線効果は大きくなることがわかる。さらに、曲線 部の曲率半径を変えた場合についても計算を行なったが、浮力-

表5 計算に用いたケーブルの種類および諸数値

ケ ー ブ ル (銅導体)		外 径	重 量 (kg/m)		バックテンションTB(kg)		見掛け比重	nder John - La 11.
		(mm)	滑材延線	浮力延線	滑材延線	浮力延線	(s)	摩擦刀比
	OFZV	76	19.7	15.2	130	140	4.34	0.79
CCLAY	OFZE	76	19.4	14.9	130	140	4.28	0.89
1×1 000 2	OFZN	76	19.9	15.4	130	140	4.39	1.01
1 × 1,000 mm	OFAZV	88.8	15.5	9.3	100	110	2.50	0.62
	OFAZE	88.8	15.1	8.9	100	110	2.44	0.68
-	OFZV	132.5	44.1	30.3	220	230	3.20	0.71
FOOLV	OFZE	132.5	43.3	29.5	220	230	3.14	0.79
$500 \mathrm{kv}$ $1 \times 1,200 \mathrm{mm^2}$	OFZN	132.5	44.7	30.9	220	230	3.24	0.90
	OFAZV	142	29.9	14.1	150	160	1.90	0.48
	OFAZE	142	29.1	13.3	150	160	1.84	0.53
$\frac{500\mathrm{kV}}{1\times2,000\mathrm{mm}^2}$	OFZV	145	56.0	39.5	280	290	3.39	0.72

注:(1) OF: 鉛被OFケーブル

OFA:アルミ被OFケーブル

ZV:ビニル防食 ZE:ポリエチレン防食 ZN:クロロプレン防食

(2) 摩擦力比= $\frac{\mu_F \boldsymbol{w}_F}{\mu_L \boldsymbol{w}_L} = \frac{\mu_F}{\mu_L} (1 - \frac{1}{s})$

87

VOL. 54 NO. 4 1972

500kV1×1,200mm²OFケーブル

管路長および曲線部位置と浮力 - 滑材張力比との関係 図 9

滑材張力比に対してはほとんど影響はなかった。ただし, 張力が 同じでも曲率半径により側圧が異なってくるので、後述する引入 れ限界長さには大いに影響する。なお、計算例は66kVおよび500 kV OFケーブルについてだけ記載したが、154kVおよび275kV OF ケーブルの場合は前二者の間に入るものと考えればよい。

引入れ限界長さの計算例 曲線部の曲率半径 引入れ限界長さ(m)

R	滑材延線	浮力延線		
5 m の場合	320 (R)	630 (R)		
10 m "	520 (T)	1030 (T)		
5 m ″	210 (R)	280 (R)		
10 m "	350 (T)	480 (T)		
5 m ″	150 (R)	210 (R)		
10mの場合	350 (R)	470 (R)		
	R 5mの場合 10m " 5m " 10m " 5m " 10mの場合	R 滑材延線 5 mの場合 320 (R) 10m " 520 (T) 5 m " 210 (R) 10m " 350 (T) 5 m " 150 (R) 10 mの場合 350 (R)		

注:(T)および(R)は、引入れ限界長さがそれぞれ引張応力あるいは側圧のほうで 制限されたことを示す。・

と図10のようになり、これより浮力延線効果の大まかな推定をす ることができる。

3.5 引入れ限界長さの計算例とその検討

表6

ルートの中央部に5mまたは10mRの直角曲りがある管路(図7 において $l_1 = l_2$, $\theta = 90^\circ$, R = 5または10m) へ500kV ビニル防 食OF ケーブルを引き入れる場合の引入れ限界長さを、滑材およ び浮力延線の場合について計算で求め比較した。計算に用いた諸 数値は前記と同じである。なお、引入れの限界条件としては、 導 体(銅)の許容引張応力を7kg/mm²およびビニル防食ケーブルの 許容側圧を700kg/mにとった。計算結果は表6に示すとおりであ る。これより、浮力延線によって引入れ限界長さがかなり長くな り、特にOFAZVケーブルでは2倍にもなることがわかる。

3.4 浮力延線効果の概略推定法

ケーブルの見掛け比重,摩擦係数,管路形状などのすべての条 件を考慮した正確な浮力延線効果の推定は前述の方法で計算でき るが、ここでは、正確な推定をする前にまず概略の効果を知るた めの簡便な推定法について述べる。

浮力延線効果に対して最も影響の大きな要因は、ケーブルの見 掛け比重に関連するケーブル単位長重量比 wF/wL およびケーブ ル摩擦係数の比 µF/µL であり、管路形状による影響は比較的小さ く、張力計算式から考えてもその効果は摩擦力の比 $\mu_F w_F / \mu_L w_L$ に大きな影響を受けることがわかる。表5には各ケーブルに対す る摩擦力比の値を示したが, 種々の一般的な管路条件に対して計 算した浮力 - 滑材張力比と比較検討してみると、概略次式で表わ されることがわかる。

> $\frac{T_F}{T_L} \doteq \frac{\mu_F w_F}{\mu_L w_L} + a = \frac{\mu_F}{\mu_L} \left(1 - \frac{1}{s}\right) + a$(7)

ここに、 a = 0.05~0.2 (平均0.1)

88

各防食層の種類に対するケーブル摩擦係数(表4における平均 値) $\epsilon(7)$ 式に代入し、a=0.1として T_F/T_L と s との関係を求める

500kV OFケーブルが実用された場合の陸上輸送制限条長は350 ~500m程度と考えられるが、引入れ限界長さからスパン長が短く 制約される場合は浮力延線の適用を前提としてスパン長の減少を 防ぐことができ、結果的にはマンホールおよびケーブル接続個所 を減らすことになり、その経済的効果はじゅうぶんに期待できる。

4. 結 言

以上, 66kVおよび500kV OFケーブルの浮力延線結果および浮 力延線効果に及ぼす影響について述べてきたが、それらを要約す ると次のようになる。

- (1) 66kV 1×1,000mm² および500kV 1×1,200mm² OFAZVケーブ ルの石綿セメント管路に対する浮力延線の結果は、滑材延線時 の引入れ張力に比べてそれぞれ85%および57%に減少した。
- (2) 石綿セメント管路に対するケーブルおよびワイヤロープの摩 擦係数を求めた。
- (3) 浮力延線効果に対しては、ケーブルの摩擦係数および見掛け 比重が最も大きな影響を及ぼし、これらの値からその効果を概 略推定することができる。
- (4) 浮力延線法によりマンホールおよびケーブル接続個所を減ら すことが可能であり、その経済的効果はじゅうぶん期待される。 終わりに、本研究に対して種々ご指導ご援助をいただいた九州 電力株式会社および東京電力株式会社の関係各位ならびに日立電 線株式会社日高工場橋本部長,同研究所福田部長,沼尻主任研究 員に厚くお礼申し上げるとともに、実験を遂行するにあたりご協 力いただいた同研究所岡皓一氏, 仲沢亮二氏はじめ関係者のかた

がたに感謝する。

参 考 文 献 (1) 荒卷, 山手, 村門, 吉田, 須藤, 仲沢: 電学東支大 No. 287 (昭44) (2) 林, 吉田, 岡, 福田, 橋本: 電学全大 No. 1140 (昭46) (3) R. C. Rifenburg : AIEE, 72, 1275 (Dec. 1953) (4) 飯塚,吉田,仲沢:日立評論 49,845(昭42-8)