生物学における走査電子顕微鏡の役割 3	
発ガン物質のけい光分析法による微量分析 9	
ゼーマン効果を用いた水銀の原子吸光分析15	
生体成分の高速液体クロマトグラフィ	
代謝物質の新しい同定法27	
最近の医療における計測技術の動向33	

ス

にお

ける 計 測

小特集

- -

- -

1.2

40

74

12 3

4

ください。

生物学における走査電子顕微鏡の役割

Ŧ

4

 $\overline{\mathcal{I}}$

サ

4

シ

ス

I.C.

お

け

る

計

測

1

特

集要旨

最近,生物学分野における走査電子顕微鏡に対する関心は極めて大きい。その支え になっているものは,機器面の進歩として,フィールドエミッション電子銃を採用し た走査電子顕微鏡の実用化である。一方,生物試料技術の急速な進歩は試料表面だけ でなく,細胞内組織の立体的な観察までも可能にした。本稿は,走査電子顕微鏡の原 理,構成などの概略を紹介してその特徴を明らかにするとともに,特に現在までに開 発された種々の生物試料作成技術,すなわち乾燥法,試料剖出法,エッチング法及び 蒸着法などについて述べた。また併せて,現在得られている30Å程度の高分解能走査 電子顕微鏡像の問題点を明らかにし,生物分野における走査電子顕微鏡の立場につい て述べた。

発ガン物質のけい光分析法による微量分析

大気浮遊粉塵中の多環芳香族炭化水素をハイボリューム サンプラで捕集し,真空昇 華法で抽出し,二層一次元薄層クロマトグラフィで分離し,けい光分光光度計と薄層 クロマト装置を用いて分析する方法について述べ,その結果を記した。またピーナツ のカビ毒アフラトキシンは抽出後,同じく二層一次元薄層クロマトグラフィで分離し, けい光法による分析を行なった。いずれの場合も,試料量が少なくて済み,操作が簡 単で分析時間が短くなった。

ゼーマン効果を用いた水銀の原子吸光分析

我々の生活環境を取り巻く土壤,植物,食品及び生体などに含まれる微量の水銀を,極めて迅速に精度良く分析する501形日立ゼーマン水銀分析計を開発した。実試料を直接導入し試料に含有される水銀を効率良く原子化する高温酸素ふんい気電気炉と,

磁場と垂直な方向から観測するゼーマン効果を用いた原子吸光法とにより,前処理をいっさい行なわずに分析できる。磁場走査法を用いて原子吸収線波長付近の種々の高分解スペクトルを実測し,ゼーマン効果を用いた原子吸光法の利点を原理的に明らかにするとともに,本装置によって実試料を前処理なしに分析する際,共存物質による影響をほとんど受けないことを確認した。National Bureau of Standard(NBS)の標準試料を本装置で前処理せずに分析した結果,他の分析法と良い一致をみた。本装置は一検体を1~2分で分析でき,分析の作業能率は約20倍改善された。水銀の検出限界は0.28ng,精度は変動係数(C.V.値)1.2%であった。

生体成分の高速液体クロマトグラフィ

液体クロマトグラフィを高速化するために必要なカラム充填剤,高圧送液ポンプ, 波長可変流動光度計,グラディエント装置などを開発し,それらを組み合わせた装置 を用いて,生体成分のうちステロイドホルモン,PTHアミノ酸,核酸関連物質の分離 を試みた。メタノール-水混合溶媒を移動相とし,日立ゲル#3010を用いるステロイド ホルモンの分離挙動は,逆相分配クロマトグラフィと考えられるが,吸着作用もまた 大きく寄与しているものと思われる。

代謝物質の新しい同定法

代謝物質の新しい同定法として, ガラス キャピラリー カラムを適用したガスクロ マトグラフィー質量分析法 (GC-MS法)を検討した。

ガラス キャピラリー カラムは従来使用されている充填カラム,ステンレス鋼製ゴ ーレイ カラムに比べ分離効率が良く,試料が変質しにくいという特長をもっている。 これをGC-MS装置に応用し複雑な試料の分析を試みたところ,ステロイド,脂肪酸 及び植物精油などの分析に良好な結果が得られた。

また、スプリットレス注入法により、低濃度試料の分析が可能であることを確認した。

最近の医療における計測技術の動向

医療では、複雑な制御能力をもつ生体を計測対象とするため、生体への侵襲の少な

と旅では、夜福な崎崎市に分をもう主体を町は内水とうかにの、主体の夜夜の い体外計測が多く用いられる。体外計測としては、各細胞の活動電位や、心臓の弁の 開閉音の振動など、体内で発生するエネルギーを体外で計測するものと、超音波、放 射性同位元素などを体外より与えて、その反応を体外で計測するものとがある。両測 定法ともに、測定部位と、測定対象間に他の組織が介在するため、対象外信号や雑音 の混入があり、その除去が重要課題となる。 また、現在多用されている生体電気計測装置、超音波応用測定装置及び核医学測定 装置について、問題点と対策を中心に、最近の動向を報告した。

U.D.C. 621. 385. 833. 28: 57. 086. 3

生物学における 走査電子顕微鏡の役割 **Contributions to Biology of Scanning Electron Microscope**

A sizable contribution to biology has been made in recent years by the scanning electron microscope as a result of two factors: the successful adaption of a field emission electron gun to scanning microscope; and the rapid progress made in specimen preparation techniques for biological samples permitting stereoscopic observation of cell structures. This article is an outline of the principle, construction and features of scanning electron microscopes and various current specimen preparation techniques including the newly-developed drying method, and the sampling, etching and evaporation methods. Problems with high resolution scanning electron microscopes of the 30Å class are also discussed.

永谷 田中敬一**

Takashi Nagatani Keiichi Tanaka

言

1 (p)

EY

100

1.54

harder.

- 3-

8 7

5. M.

1.00

1 P

16

1 A

6 34

< H.

- Bel

A (#1)

24

3

(3) 像が立体的に見えること。 電子顕微鏡の約40年に及ぶ歴史の中で、走査形電子顕微鏡

(Scanning Electron Microscope:以下, SEMと略す) がその仲間入りするようになったのは、1965年からであるか ら、その間わずか9年しか経過していないことになる。しか し、その間に生物・非生物分野への普及は極めて著しいもの があった。特に医学・生物学分野への応用は顕著なものがあ る。例えば、最近5年間の日本電子顕微鏡学会の生物分野に おけるSEM関係の研究発表の推移をみると、45年に4題、 46年に10題, 47年に12題, 48年に18題, 49年には39題に及ん でいる。このうち、49年度分は生物関係全研究発表数の25% に達している。従来の透過形電子顕微鏡(Transmission Electron Microscope:以下, TEMと略す) が, どちらかと いえば、いわゆる電子顕微鏡学として、アカデミックな立場 からの貢献ないしリードが重要視されてきた立場に対しSE Mは、むしろ一般的なミクロ観察手段としての光学顕微鏡に 近い立場をとるものである。このため、従来TEMに比較的 縁の薄かった分野,すなわち基礎・臨床医学教室などにも光 学顕微鏡との対比を基にしながら,いっそう活発にSEMに よる研究が行なわれるようになることが予想される。

SEMがなぜこのように大幅な普及を期待されているかは 概略次の三つの理由によるものと思われる。

(1) 光学顕微鏡に比較して、分解能が格段に良いこと。むろ ん**TEM**に比べては分解能は良くないが,多くの研究室では 今日でもミクロ観察の主力は光学顕微鏡である。操作が簡単 で, 撮影に余り熟練を要さず, 簡単に高分解能像が得られる SEMは魅力的であるに違いない。

(2) 試料作製が簡単なこと。

TEMでは、とにかく試料を電子が通過できる程度に薄片 を作らねばならない。この超薄切片法が実に厄介で、熟練を 要する。それに反しSEMは、試料ブロックのまま見える。 臨床の医者でも片手間に試料作りができるわけで、この点が 大きな魅力となっている。

試料のある一断面を見ているTEM像の解読はかなりの修 練を要し、素人には難しい。一方、SEM像は、焦点深度が 深いことから,物があるがままに存在するかのように立体的 に観察されるから, 解読に労苦を要しない。このこともSEM の大きな利点の一つである。

最近, SEMとして, 高分解能をねらう新しい技術, すな わちフィールド エミッション電子銃の実用化を導入したもの から, 光学顕微鏡に対比できるような卓上簡易形まで, 数多 くの機種が製品化されている。ここでは、簡単にSEMの原 理,構成を紹介し,最近開発された生物試料作製技術を中心 に、SEMの応用の幾つかに触れる。最後に、SEMの将来 動向を展望し、今後ますます高まると思われる生物学におけ るSEMの役割について明らかにしたい。

2 SEMの特長

SEMは、よく従来の光学顕微鏡とTEMのギャップを埋 めるものであるといわれる。表1は、以上三つの顕微鏡を大 まかに比較して示したものである。これから分かるように, SEMの特長は著しく大きな焦点深度をもって、 試料表面の 凹凸を「そのまま観察できる点」にある。例として、ネコ蝸 牛内毛細胞の聴毛のSEM像を図1に示した。 音を感じる細 胞の表面に規則的に配列した毛の束が、あたかも「パイプオ ルガン」のように見える。このようにSEM像は、従来から **TEM**切片像として頭の中で構成されていたものを,更に一 目で直感的に生物学的な知見と理解を助ける意味において, 重要な働きをするものである。

3 原理と構成(1)

SEMの原理は、図2に示すように、電子線が極めて細く 絞られることを利用して (これを電子プローブという), 真空 中の試料上を二次元的に走査し, 順次発生する二次電子を電

3

*日立製作所那珂工場 理学博士

** 鳥取大学医学部(解剖)教授 医学博士

生物学における走査電子顕微鏡の役割 日立評論 VOL.56 No. 11(1974-11) 1026

表 | 各種顕微鏡の特徴比較 光学顕微鏡・走査電子顕微鏡(SEM),透過電子顕微鏡(TEM)の性能や 特徴についての比較表である。

Table I Characteristics of Optical Microscope, Scanning Microscope and Transmission Microscope

性能・特徴	種別	光学顕微鏡	走 査 電 子 顕 微 鏡 (SEM)	透 過 電 子 顕 微 鏡 (TEM)				
	簡易形	5 µm *	0.2 µm	© 100Å				
分解能	普及形	0.2 µm*	100Å (10nm)	© 10Å (0.1nm)				
	高級・特殊形	0.1 µm*	.30Å (3 nm)	© 2 Å (0.2nm)				
焦点深度		浅 い*	◎ 深 い	中 位				
	透 過	可能	可能	可能				
	反 射	"	"	不十分*				
観察モード	回折	"	"	可能				
	その他	若干	多 い	少ない				
	作製技術	容易	◎ 容 易(非生物) やや複雑(生物など)*	複雑, 熟練を要す*				
	種類	多 い (表面及び透過)	多 い (表面のみ)	薄膜(又はレプリカ)のみ*				
,武 米斗	透過可能厚さ	◎厚 い	薄い	極めて薄い*				
	ち き 大	大	◎大	/]*				
	状態	◎気 中	真空下	真空下				
視 野	l	大きい	◎大きい	小さい*				
映像信号処 ヨ	里	不可	◎ 可 能	不可				
色 彩		◎ あ り	なし	なし				

注:◎ 比較して優れている点

4

* 比較して劣っている点

気信号として増幅し、テレビ画面と同様な映像(拡大像)を 得る顕微方式である。従って、その構成も従来のTEMとテ レビのようなディスプレイ装置を組み合わせた形となってい る。通常SEM像はブラウン管の像をカメラで撮影して得ら れる。SEMの倍率は、試料上の走査幅とブラウン管(CRT) 画面幅(又は、最終印画幅)との比で決まる。通常10倍から 10万倍程度まで連続可変となっている。原理的に、焦点及び 画面の明るさは倍率によって変化しない。

試料上を走査する電子プローブは二次電子を発生する。こ の二次電子量は,試料面の凹凸に応じて変化しているので, これが映像信号として利用される。

一般に,100A程度,あるいはそれ以下の高分解能像を得ようとするときは、プローブ電流は10⁻¹¹~10⁻¹²Aにしなければならず、従って良い像質(コントラストとS/N比)を求めようとすれば、1枚のSEM像を得るのに50~100秒を必要とする。

現在、一口にSEMといっても多種多様であって、光学顕 微鏡と並ぶ卓上形から、価格上から高級なTEMをはるかに 上回るものまである。図3は、その大まかな分類と特長をま とめたものである。図4は、生物学者に最も人気のあるフィー ルドエミッション電子銃を用いた、日立走査電子顕微鏡HFS -2S形の外観を示すものである⁽²⁾⁽³⁾。フィールドエミッシ ョンを利用した電子銃はシカゴ大学のCrewe⁽⁴⁾⁽⁵⁾教授によっ て開発されたものであるが、従来の熱電子銃に比べて輝度が 極めて高く、また加熱を要しないので、電子源として理想的 に近く、SEMの分解能を飛躍的に向上させた。また、この 分解能向上は、医学・生物学的な微細構造の観察に大きな刺 激を与えることになった。

4 SEMのための生物試料作製技術

前述したように、試料作りが簡単なことはSEMの特長の

	であ	る。	しカ	·L,	いカ	っに	簡単	と	いっ	23	Ь,	それ	なり)の	問
題点	も存	在す	る。	その	主な	:点	は次	0	3 点	でる	ある。	0			
(1)	微細	構造	をぃ	っかに	うま	ミく	保存	L	なが	ら言	式料	を乾	に燥さ	らせ	る
か。															
(2)	観察	しよ	うと	:する	個列	ŕを	, ka	か	にし	てき	钏出	する	か。		
(3)	非導	電性	の生	三物試	料の)チ	ャー	ジ	(帯	電)	を	いカ	いにし	して	防
ぐか	0														

生物学における走査電子顕微鏡の役割 日立評論 VOL. 56 No. 11(1974-11) 1027

図2 SEMの原理 SEMの一般 的なシステムを示す。 Fig. 2 Principle of Scanning Electron Microscope

5 7

 \mathcal{H}

1 1

FW

11 B

in.

1. 34

1 /2

2 7

16. 38

36

薄膜の観察

2

図3 電子顕微鏡の分類 TEMと SEMとの分解能の関係を示す。 Fig. 3 Electron Microscopes and Their Resolutions

5

4.1 乾燥法

水分を含んだ軟らかい生物試料を乾燥させる際,その微細 構造をひずませる原因は表面張力である。従って,表面張力 の作用をなくして乾燥させなくてはならない。その方法とし て臨界点乾燥法と凍結乾燥法とがある。後者は,乾燥に時間 がかかること,液体窒素が必要なこと及び凍結の際に生ずる 氷晶を防ぐことが厄介なことなどのため一般的ではなく,通 常はもっぱら前者の臨界点乾燥法が使用されている。

臨界点乾燥法は、炭酸ガスCO₂が臨界温度31.4℃でガスと も液ともつかない状態になり、界面が消失する現象を利用し たもので、もともと1951年にAnderson⁽⁶⁾が、SEM試料の乾 燥のために考案したものである。その後、これがSEMの試 料作製に用いられて、非常な好結果が得られた⁽⁷⁾⁽⁸⁾。我が国で も田中⁽⁹⁾が簡単な臨界点乾燥装置を製作し、その方法の優秀 性を紹介した。

この方法の概要を記すと、密閉容器中に試料を入れ、液状 CO2を注入する。次いで容器を臨界点以上に熱すると、試料 中に滲透した液体CO2も、容器中のそれも、同時にガス化し、 このガスを徐々に噴出させると、界面張力の影響を受けるこ となく乾燥を終結するわけである。

臨界点乾燥法にはCO₂を用いる代わりに, Freon¹⁰⁰, Dry (12) Ice¹¹¹, N₂Oを用いる方法もある。

この臨界点乾燥法は, SEMの試料作りに大きな威力を発

図4 HFS-2S形フィールドエミッション形高分解能走査電子顕微 電子銃として、電界放射による冷陰極タングステンチップを使用している。このため、高分解能が得られると同時に、電子銃の寿命は半永久的である。加速電圧0-25kV、分解能30Å(鏡体部佐高さ170cm、幅74cm ディスプレイ部佑高さ120cm、幅120cm)

Fig. 4 Hitachi HFS-2S Field-emission Type Scanning Electron Microscope

揮するけれども、ただ、あらかじめ試料を上昇アルコール列 によって脱水処理を行なっておかねばならない。水から直接 乾燥することができないわけである。これが残された欠点で あるといえる。最近Freon 22を用いてそれから乾燥する方法 も発表されているが、十分な方法ではない。従って、今後水 とよく混じり合う新しい媒介液の開発が望まれる。

4.2 観察部位の剖出

生体から取り出される試料表面上には,通常,粘液,組織 液,血液などの液体成分,あるいは血球その他の細胞成分の コンタミネーションで被覆されている。これらの洗浄は,S EMの場合,TEMに比べ相当に注意を払う必要がある。

SEMが表面観察にその威力を発揮する点に大きな特徴が あるが、一方で細胞の表面には、繊毛その他、わずかの構造 しかなく、大部分の生体機能上重要な装置は細胞内に存在す る。従って、どうしても細胞を割断して、表面に露出してか らでなければ多くの構造を観察できない。

細胞内構造の剖出の方法としては,

(1) 刃物で切る方法

6

Tissue Sectionne⁽¹⁴⁾ Bibratom⁽¹⁵⁾などによる方法である。 (2) 割る方法

- (a) Freeze Fracture した標本を乾燥して用いる方法
- (b) Cryofracture 法⁽¹⁹⁾⁽²⁰⁾⁽²¹⁾
- (c) Resin Cracking法⁽²²⁾⁽²³⁾
- (d) Alcohol Cracking 法⁽²⁴⁾
- (e) Styren Resin Cracking 法⁽²⁵⁾

などがある。このうち、結果の良いものは後の三方法である。 これら三つの方法は、それぞれ割るときの温度が異なってい る。すなわち、(e)のStyren樹脂法は常温、(c)のResin Cracking は-30℃、Alcohol Cracking は-160℃である。 しかし、いずれにしても組織を媒体に包埋し、刃物で割り、 後に媒体を溶出、除去する点で一致している。本方法は現在 研究室段階で試みられており、将来はだれもが容易に扱うこ とのできる精密な割断器の要求が高まろうし、また種々の形 のものが出現するものと思われる。⁽²⁶⁾ この方法で作製した試料によって、**TEM**で見られている 細胞内組織、すなわち細胞核、ミトコンドリア、小胞体、ゴ ルジー装置、分泌顆粒なども観察することができる。

また、従来TEMでは明らかにし得なかった休止核内染色 糸を、前述のフィールド エミッション形SEMで観察するこ とにより解明し、その二重らせん構造を明らかにした。また、 (28) ー般組織学的な応用としては、内耳、甲状腺、軟骨及び背髄 などの研究に用いられて成果を上げている。

このように割断法によって、細胞内構造のSEMによる観察ができるようになったが、別の手段として注目されている ものに従来、金属や鉱物の分野で用いられていたイオン エッ チング法がある。これまで生物試料に対するエッチング法と しては、ヨード水溶液による方法が行なわれたが、これより もイオン エッチング法のほうがよい結果を与えるようである。

このイオン エッチング法の生物学的な応用は,Lewis, Fulker などによって始められた。しかし、これらのエッチング イオンのエネルギーは高く、エッチング固有のパターンと、 生物組織構造そのものとの判別が難しかったが、最近、藤田、 永谷は、1keV以下という極く低いエネルギーによるイオン エッチングを試み、良い結果を得ている。イオン エッチング 法が生物試料の組成、構造密度、――膜構造や原形質などに よる差――との間にどのような関係があるか、まだ多くの問 題を残しているが、実験例は、幾つかの興味あるデータを示 しており,将来この方法の生物学応用の成功は,極めて可能 性あるものと考えられる。事実,前述の割断した試料表面に イオン エッチング法を応用してみたところ, 容易に細胞内構 造を観察することができた(図5)。今後、このイオンエッチ ング法はSEMの生物試料作製法の一つとして、多くの研究 が行なわれ注目されることであろう。 4.3 生物試料に導電性を付与 乾燥された生物試料は一般に非導電性であり、 そのまま SEMで観察すると、試料表面に帯電現象(チャージ アップ)が 起こり、安定な像観察ができない。従って、検鏡する前に真

£.

生物学における走査電子顕微鏡の役割 日立評論 VOL. 56 No. 11(1974-11) 1029

3

4 30

4 3

1. 11

5 7

1. 1.

10 N

図 5 膵臓外分泌細胞の核 表面に多くの核孔が見られる。樹脂割断後, イオン エッチングしたものを示す。

Fig. 5 Nucleus of a Pancreatic Acinar Cell from a Dog (Ion Etched After Frozen Resin Cracking)

図 6 導電染色法によるラットの気管(試料は岡山大学医学部助 教授村上宅郎氏提供による) 適当な導電材を試料自身にしみ込ませ たものである(20kV)。

Fig. 6 Inner Surface of Trachea(rat)— "Conductive Staining" Taken at 20kV

空蒸着装置によって、金、白金、金ーパラジウムなどの重金属を薄く蒸着する。この金属蒸着は、単に帯電防止に役立つのみならず、二次電子放出を高めて像を明るくし、また電子線によるダメージを防ぐ役目も果たしている。

しかし,凍結した試料をどうしても直接観察したい要求が あるときは,前述の金属蒸着を行なわず,帯電が安定してい る数キロボルトの低加速電圧でSEM観察を行なうことも可 能である。しかし,この方法では通常のSEMでは高分解能 が得られない。

一方,100A以上の高分解能SEM像を得ようとするとき (37) 先の金属蒸着法による場合でも,蒸着膜自身の微細構造が観察の邪魔をすることも十分注意しておく必要がある。

生物試料に導電性を与える他の巧妙な方法は,生物試料の 乾燥前に,適当な導電剤を試料自身に滲透させる方法である。⁽³⁸⁾ この「導電染色法」ともいうべき方法は,最近我が国におい ても村上,渡部らのタンニン酸オスミウムを用いた例が報告 され注目された⁽³⁹⁾ (図6)。

また、細菌やバクテリアなどの微生物は、走査電子ビーム が透過できる大きさである場合、試料保持台にアルミニウム や炭素などの導体転元素材を用いることによれば、帯電現象 が起こらず、10万倍程度の高倍率像が金属蒸着や特別な導電 処理を行なわないでも得られることが、永谷、斉藤らによっ て報告されている(図7)。

以上のように、SEM出現時余り大きく期待されていなかった、高分解能SEM像に対するアプローチも活発に行なわれるようになっている。

5 走査電顕の生物学的な応用及びその展望

その経過など,⁽⁴¹⁾又は淋巴腺内部の構造などを立体的に観察し, 従来,**TEM**では想像的にしか表わされなかったものをあり のままに見せようとする行き方がある。また,技術的にまだ 困難な問題は多いが,ステレオ像を観察しつつマイクロマニ プレータを操作して,思いどおりの顕微解剖を行なうことも 将来の大きな課題であろう。

また,血管に樹脂を注入して,組織内の微細な血管のつながりを知ろうという方法もある。(43)(44)

このような研究は比較的低倍率でよいため, SEMの長焦 点の特徴を利用することができ,将来大いに利用され得る領

4の中でも若干触れているが、SEMの生物学的な応用は 既に数多く、筆者らが関心を持つ幾つかの方向について考え てみたい。

まず第一には、SEMの焦点深度が大きく、ステレオ像として立体的な構造が把握しやすいことを利用して、顕微解剖的な方面への応用である。例えば、脾臓の血管壁の構造とか、

図7 無蒸着法によって撮影したバクテリオ ファージ 大腸菌に 吸着したT4ファージ,臨界点乾燥法,加速電圧25kV,試料保持AI板を使用した もので特別な導電法は行なわない(試料は福岡大学医学部教授天児和暢氏提供 による)。

Fig. 7 T4 Phages Adsorbed on E. Coli Cell (Taken by Hitachi HFS-I SEM at 25kV, Non-coated Preparation) 域である。

一方、生の試料を見ようという試みも行なわれており、こ の生のもの見るという点ではTEMよりSEMのほうが可能 性が大である。例えば、カビ類胞子を冷凍状態で観察し、そ の後培養環境において発芽させ、再び観察することに成功し ている。これは胞子という特殊な状態の生物に過ぎないが, 今後はいろいろな生物において試みられるであろう。

もう一つの方向は、できるだけ高い分解能で、しかも立体 的に生物試料を見ようとするものである。すなわち、細胞内 構造など,従来はTEM像の再構築によって得られた像を直 接観察し,細胞組織内各器官の各要素の構造や,機能的つな がりを見ようとするものである。

結 言 6

以上, SEMは原理的にもTEMより分解能が劣り、細胞 内微細構造の探究には不利な面が多いが, 前述のようにフィ ールドエミッションSEMの開発と、そのソフト技術の進歩 によりかなり微細な領域まで研究できる見込みが立っている。 例えば、デオキシリボ核酸(DNA)から成る染色体の二重 らせん構造,バクテリオファージの立体構造,ウィールス(47) などの観察も可能になっている。

より微細なものを見たいと思うのは、形態学者の本能であ るから、高分解能SEMの領域はやはりSEMとして主流を 行くものと考えられる。

- (6) T.F. Anderson: Trans. N.Y. Acad. Sci., Ser. II, 13, 130 (1951)
- (7) G.A. Horrige and S.L. Tamm: Science, 163, 817 (1969)
- A. Boyde and C. Wood: J. Microscopy 90, 221 (1969) (8)
- K. Tanaka: J. Electron Microscopy 21, 153 (1972) (9)
- A.L. Cohen et al: J. Microscopie 7, 331 (1968) (10)
- K. Tanaka and A. Iino: Stain Technol. (1974) in press (11)
- T. Koller and W.J. Bernard: J. Microsopie 3, 589 (12)(1964)
- (13) R.H. Turner and C.D. Green: J. Microscopy 97, 357 (1973)
- T. Makita and E. B. Sandborn: Exptl. Cell. Res. 67, 211 (14)(1971)
- T. Makita: Acta histochem. cytochem, 6, 11 (1973) (15)
- A. Boyde and C. Wood: J. Microscopy 90, 221 (1969) (16)
- L.T. Germinaro and J.H. McAlear: Stain Technol., 46 (17)249 (1971)
- W. J. Humphreys and T. J. Wodzicki: Proc, 30th Ann, (18)Meet. EMSA 238 (1972)
- C.H. Haggis: Proc IITRI/SEM, Chicago 99 (1970)(19)
- D.J. Lim: Proc. IITRI/SEM, Chicago 297 (1971) (20)
- M.K. Nemanic: Proc. IITRI/SEM, Chicago 297 (1972) (21)
- K. Tanaka: Naturwiss. 59, 77 (1972) (22)
- W.J. Humphreys et al: J. Cell. Biol., 56 876 (1973) (23)
- (24) 浜野他, 第29回日本電子顕微鏡学会講演予稿集 91, (1973)

なお、ミクロ観察した部分について、よりいっそうの情報 を得るために,発生したX線を利用するミクロ分析,また走 査ビーム形像というSEMの手法を,切片に応用した透過形 走査電子顕微鏡(以下, TSEMと略す)も, SEMとは切 り離せない主要なテーマであるが、本稿では割愛した(図3) 参照)。

以上, SEMの現在までの活躍領域について触れたが、今 後もSEM人口が, 簡便高分解能SEMの出現とともにます ます拡大するにつれて、これら各方面の研究は飛躍的に増大 するものと思われる。

参考文献

8

-その原理と当面する問題」,色材 永谷,「走查電子顕微鏡-(1)協会誌, 45, 260 (1972

- J. Electron Microscopyに投稿中 (25)
- 田中; 日本電顕学会会報 57 (1973)(26)
- K. Tanaka and A. Iino: Proc 30th Ann. Meet. EMSA, (27)408 (1973)
- K. Tanaka and A. Iino: Exptl. Cell. Res. 81, 40 (1973) (28)
- T. Tanaka et al: Proc. IITRI/SEM, Chicago, 428 (29)(1973)
- S. Kobayashi: Arch. histol. jap. 36, 107 (1973) (30)
- K. Tanaka: Arch. histol. jap. 36 281 (1973) (31)
- K. Ohtsuki: Arch. histol. jap. 34 405 (1972) (32)
- B. J. Panessa and J. F. Gennaro Jr.: Proc 30th Ann. (33)Meet. EMSA 208 (1972)
- S.M. Lewis et al: Nature, 220, 614 (1968) (34)
- M. J. Fulker et al: Proc. IITRI/SEM, Chicago, 379 (1973) (35)
- T. Fujita and T. Nagatani et al: Arch. histol. jap. 36, (36)195 (1974)
- T. Nagatani and M. Saito: Proc. IITRI/SEM, Chicago 51 (1974)
- M. A. Goldman: Proc. Nat. Acad. Sci. U.S.A, 70, I, (38)3599 (1973)
- 渡部·村上:日本電顕学会第30回学術講演会予稿集 190 (39)(1974)
- 日本電顕学会第30回学術講演会予稿集 191 (40) 永谷ら: (1974)
- (41) M. Miyoshi and T. Fujita: Arch histol. jap. 33, 225 (1971)
- T. Fujita and M. Miyoshi et al: Z. Zellforsch, 133, 147 (42)(1972)
- T. Murakami et al: Arch histol. jap. 33 179 (1971) (43)
- H. Fujita and T. Murakami: Arch. histol. jap. 36 (44)181 (1974)

10

- (2) 木村,「フィールド・エミッション形走査電子顕微鏡の現状と 将来, The Hitachi Scientific Instr News 15, No.5, 2 (1973)
- (3) 斉藤ほか:「日立HFS-2形電界放射形超高分解能走査顕微鏡」 日立評論 56, No.3, 55 (1974)
- (4) A.V. Crewe, J. Wall: J. Appl Phys, 39, 13, 5861 (1968) A.V. Crewe et al: Rev. Sci Instr, 41, 20 (1970) (5)
- 徳永ほか: 日本電顕学会第29回学術講演会予稿集, 111 (45)(1973)
- (46) K. Amako et al: J. Electron Microscopy, in press (47) 俵ほか:日本電顕学会第30回学術講演会予稿集,103

(1974)

渡部·永谷: 生物学におけるエネルギー分散形X線分光法に (48)ついて、細胞 6(2)、53; 同6(3)、75 (1974)