U.D.C. 531.715.1:535-15-4]:539.23:681.787.8

近赤外偏光干渉計による膜厚測定 Film Thickness Measurement with Near Infrared Polarization Interferometer

半導体工業で用いられるSi基板上に生成された酸化膜などの、薄膜の厚さを測定する手段としては、従来主として機械的な方法、あるいは分光光度計による光学的方法によっていた。本稿では、薄膜における光の干渉を、干渉計を用いて観察し 腹厚を求める方法について述べ、近赤外偏光干渉計を用いた、膜厚の迅速測定を行なう装置について述べる。走査時間は光路差110μm当たり1秒で、1サンプル10秒 以下で測定される。多結晶シリコンの膜厚測定結果では、機械的方法で得られた値 と良く一致し、最小0.15μmの膜厚まで測定できた。

并上 克*	Masaru Inoue
前田芳夫**	Yoshio Maeda
佐藤彦三郎**	Hikosaburô Satô

1 緒 言

近年,半導体工業特に集積回路(IC)産業は,大規模集積 回路(LSI)化の波に乗り,金属一酸化膜-半導体(MOS) 技術を含む分野の発展は注目すべきものがある。このような 半導体の製造プロセス中で,絶縁層としてのシリコン酸化膜 や窒化膜及びその上に形成された多結晶シリコン膜の厚さが, 一定の許容範囲に入っていることが製品の歩どまり向上に必

2.2 光学系と性能

近赤外偏光干渉計の光学系は、図1にコリメータ レンズと 集光鏡を追加したもので、バビネ・ソレイユ補償板には人工 水晶を用いている。偏光板と検光板にはポラロイド社の HR 膜を、検知器としてはPbS セルを使用し、波長0.8から2.3 μmまでの領域に用いられる。

要である。

更に卑近な例として、カメラレンズに施された紫色の反射 防止膜とか、ディジタル時計の液晶板や、カセットテープの マイラ膜の厚さを、正確、迅速に知ることができればそれら の分野に益することは間違いないであろう。

水面の油膜のような薄い平面膜に美しい着色現象が生ずる ことは、我々が日常しばしば経験するところで、光学的に膜 厚を求める方法に、この干渉色と呼ばれる色を測定するもの がある。図5は自記分光光度計で記録した、シリコン酸化膜 の可視域反射スペクトルの一例である。スペクトル曲線の山 または谷に当たる干渉の極値の波長から、計算によって膜厚 は求められるが、直接的に求められれば更に便利である。

072形日立近赤外偏光干渉分光装置は,近赤外域の微弱発光の迅速分光用⁽¹⁾に開発されたが,その中心となる偏光干渉計を膜厚測定に利用⁽²⁾したのが,以下に述べるFTM-1形日立 膜厚測定装置である。

2 近赤外偏光干涉計

2.1 偏光干渉計の原理

図1は偏光干渉計の原理を示すものである。光源を出た平 行光束は、偏光の方向PがXY軸に対し45度にセットされた 偏光板により、図のように波動で示された直交する二つの直 線偏光となり、バビネ・ソレイユ補償板に入射する。補償板 は複屈折性の3個の結晶片から成り、結晶軸に沿って振動す る異常光線と、結晶軸に垂直に振動する常光線とでは、それ ぞれに対する屈折率(n_e, n_o)が異なっており、入射した二つ の直線偏光の間に波動のずれを生ずる。この二つの波動は検 光板によりP方向に合成され、検知器に入射して干渉信号を 図2は光源にタングステン ランプを用いたときの、エネル ギースペクトルで、この光学系の総合透過特性を含んでおり、 光路差を走査して得られた干渉図形を、電子計算機によりフ ーリエ変換して得られるものである。干渉計の最大光路差は、 072形のように分光器として使用する際の分解能を決定するが、 バビネ・ソレイユ補償板の厚さから計算された値110 µmは、 図2と同様にして求められたキセノンランプのスペクトル、 図3におけるXeの発光線11,171、11,055cm⁻¹が完全に分離 していることからも確認できる。波数(cm⁻¹)は、1 cm当たりの 波の数で、波長 λを µm単位で表わすと、

 $\nu(cm^{-1}) = 10,000 / \lambda(\mu m) \cdots (1)$ で換算される。

干渉計の走査時間は往路1秒,復路0.44秒と,その2倍の 2段が選択できる。

81

作り出す。 偏光干渉計の光路差は結晶片の厚みd2を変化させ て走査され、結晶片の厚さの差d2-d1と、二つの屈折率の差 偏光干渉計の原理 2枚の直線偏光子の間に厚さ可変の複屈折 × 1 $n_e = n_o$ との積によって与えられる (図1参照)。 性結晶片が置かれている。

*日立製作所那珂工場 工学博士 **日立製作所那珂工場

274 日立評論 VOL. 57 No. 3 (1975-3)

図 2 近赤外偏光干渉計の光源を含む総合エネルギースペクトル タングステンランプを光源とし,得られた干渉図形をフーリエ変換したもの。 吸収は主としてHR膜によるものである。

図3 キセノンの発光スペクトル 11,100cm⁻¹付近の発光線の分解 から,最大光路差 110µm が裏付けられる。

3 膜厚測定の原理

3.1 従来の方法

シリコン酸化膜の膜厚測定には,光学的方法として可視近 紫外分光光度計を使用するか, 偏光解析装置が用いられてい た。

機械的方法は,化学的に組成の異なる膜であればなんでも 測定できるので,従来光学的方法がなかった多結晶シリコン の膜厚測定に多く用いられ、時には厚い酸化膜の測定にも用 いられた。

3.1.1 タリサーフ法

・ タリステップとも呼ばれる機械的な方法で、図4(a)に示さ れる。多結晶シリコンの一部を台状に残し、他を酸処理でエ ッチングして, 試料上を接触移動する触針の上下変位によっ て、その段差、すなわち多結晶シリコンの膜厚を記録器に記 録測定するものである。

3.1.2 5度研摩法

これはボール ドリリング法と同様, 深さ方向の情報を横方 向に拡大変換して、これを顕微鏡により読み取るもので、図 4(b)に示される。

3.1.3 分光光度計を用いる方法(3)

図5はシリコン酸化膜の可視反射スペクトルの例である。 試料面に垂直入射する場合を考えると, 干渉スペクトルの極 値の数M, 両端の極値の波長を λı, λмとし, 膜物質の屈折率 をnとすると、膜厚dは次式で与えられる。

本式から計算された図6の場合の膜厚は、およそ1µmである。 一方,多結晶シリコンに対しては,可視光は透過しないの で近赤外分光光度計を用いて, 干渉スペクトルは求められる が、シリコンでの分散(波長によって屈折率が変化する度合) が大きく, 誤差を生じやすく余り使用されていない。

3.1.4 機械的方法の欠点

- タリサーフ法,5度研摩法などの機械的方法は,標準器的 な利点はあるが,次のような欠点をもっている。 (1) 前処理としてエッチング又は研摩が必要である。
- 試料はすべて破壊される。 (2)

82

- 操作に熟練を要し,精度も高くない。 (3)
- 微小部分の局所性の測定が困難である。 $(\mathbf{4})$

(1) 分光器によっては、反射測定の際試料面が他と接触する。
(2) 一測定ごとに、スペクトルを測定記録しなければならない。

(3) チャートから極値の波長を読み取るのが困難で、更にその使た用いて計算したければなくない

 $x = n(\overline{OB} + \overline{BS}) - \overline{OP}$

(a)

図6 干渉計による膜厚測定の原理 する光路差の位置にピークが現われる。

干渉図形(b)には, 膜厚に対応

の値を用いて計算しなければならない。

(4) 極値が二つ以上ない薄い膜は測定できない。

(5) 多結晶シリコンのように分散の大きい物質の測定は困難である。

などが挙げられる。

3.2 干渉計による方法

図6は、干渉計を用いた場合の測定原理を示すものである。 図6(a)において水平に置かれた試料に、タングステン ランプ からの近赤外光が入射すると、表面反射光線①と、裏面反射 光線②との間に、膜の光学的厚さを往復するだけの波動の遅 れが生じ、この光路差xをもつ二つの光が干渉計に入射する。 もし、干渉計の光路差がゼロであるとすると、光線①'と①、 光線②'と②"が、それぞれ強め合い干渉図形の大きな信号、 ゼロピークが現われる。

ところが平面鏡M2を動かして、干渉計の光路差が膜での 遅れとちょうど同じxになった場合を考えると、遅れた光線 ②'と①"との間の光路差がゼロとなり、互いに強め合って 干 渉図形にピークが現われる。M2が反対位置で干渉計の光路差 がxとなった場合も、遅れた光線②"と①'の間の光路差がゼ ロとなり、やはりピークが現われ、この様子は図6(b)に示す ようになる。

それでは実際の膜厚dと、ピークの現われる光路差xとの間にはどんな関係があるかと言えば、図6(a)の記号を用いると、

$$x = \frac{2nd}{\cos\phi} - \overline{OP}$$

となり、屈折法則を用いて 〇 P の値を代入すると、

 $x = 2 n d \cos \phi = 2 d \sqrt{n^2 - \sin^2 \theta}$ (3)

図7 FTM-1形のブロック図 膜物質の屈折率に校正されたスケー ルで、干渉図形がモニタスコープに表示される。

光干渉計を採用し,多結晶シリコンを測定するため近赤外域 で使用することにした。

図7はFTM-1形日立膜厚測定装置のブロック図である。左は 光源,反射測定部を含む光学系で,右は干渉図形を常時表示 するたのめ信号系である。光源には10Wのタングステンラン プを用いて,測定試料上に直径約4mmのスポットを作り,反. 射光は近赤外偏光干渉計に平行入射する。PbS検知器の出力

すなわち, 膜の屈折率n, 光線の入射角 θ が既知であれば,

であるから光路差 x に比例して, 直ちに膜厚が求められる。

3.3 膜厚測定装置の実際

干渉計としては、図6(a)のようなマイケルソン形でもよいが、機械的精度からいって短波長光に適している、前述の偏

は増幅され、ディジタル信号となって二つのメモリA及びB に記憶される。通常メモリAには試料の干渉図形を、メモリ Bには背景光の干渉図形(参照干渉図形)を記憶する。モニ タスコープは図8の全体写真のように、12in電磁偏向ブラウ ン管を用いて、メモリAに記憶されている試料の干渉図形、 又はメモリBに記憶されている参照干渉図形との差を表示す ることができる。膜選択回路は、膜物質の屈折率によって異

83

276 日立評論 VOL. 57 No. 3 (1975-3)

なる(4)式の比例定数Cに対応して、X軸走査ののこぎり波の 振幅を加減し、スコープ上のスケールから膜厚がµm単位で 直読できるようにしたものである。

図9は試料測定部の写真で、左右移動と360度回転できる 試料台に、45mmウェーハを置いた例である。

4 結果と応用

4.1 主な仕様

(1) 測定対称及び測定範囲:表1のとおりである。
 (2) 測定精度:厚さ1µm付近にて±5%以内
 (3) 分析波長範囲:0.8~2.3µm(標準)
 (4) データメモリ:8ビット×512語×2チャネル

表 1 種々の膜に対する比例定数と測定範囲 一般的に, 高屈折 率物質は薄い膜厚まで測定できる。また, エピタキシャル層は測定できない。

膜物質	屈折率 〃	比例定数 C	測定範囲 (µm)	備考
Poly Si/SiO2	3.4	0.148	0.2~3	下地Si O2は0.2µm以 下が望ましい。(0.15)
SiO_2/Si	1.46	0.352	0.4~4	酸化膜
Si 3 N4/Si	2.00	0.254	0.2~1.4*	窒化膜
ホトレジスト/Si	1.545	0.332	0.9*~2.0*	
AI_2O_3/Si	1.76	0.292	(0.3~3)	サファイヤ
Ti O2/ガラス	2.75	0.183	0.3*~	$n \doteq \frac{n_c + n_o}{2} (0.1)$
ポリエステル	1.70	0.300	6*~ 9 *	マイラーフィルム
ポリスチレン	١.59	0.322	1 ~ 6 *	
空気層	1.00	0.532	5*~20	液晶用セル

注:測定範囲の*印は、測定例で限界ではない。()内は推定。 備考欄の〔〕は実測最小値を示す。/印の右は基板を示す。

4.2 測定結果

図10は本装置で測定した、多結晶シリコン膜の干渉図形(a) 及び参照としたシリコンウェーハの干渉図形との差(b)である。 これから、(a)のように直接表示した干渉図形からでも、膜に よるピークは判明するが、(b)の差表示のほうがより判然とす ることが分かる。

図 8 膜厚測定装置 中央のモニタスコープは12inブラウン管を使用 し、表示される干渉図形から膜厚がμm単位で直読できる。 図11は多結晶シリコンの種々の膜厚を、タリサーフ法で測った値drsと、本装置で測ったdFTMとをプロットしたもので、 両測定法が±500Åの誤差内で良く一致していることを示している。

図10 多結晶シリコン膜を測定した場合の干渉図形 試料の干渉 図形(a)と、参照干渉図形との差(b)を示す。

前に左右移動位置を示すスケール(単位cm)が見える。

FTM-I形での値 frmはよく一致している。

セル当たり5点の測定を行なったときの厚さの不均一性を示す(直線は平均 値)。

4.3 応用例

図12は液晶用ガラスセル(左上部)のすきま、すなわち空気 層の厚さdを測定したもので、およそ9 μ mから20 μ mまでの 10サンプルに対し、それぞれ5点の厚み分布を示している。 直線は5点の平均値であり、平均値からの偏差は5%以内に 入っている。

図13はシリコン ウェーハ上に塗布された、ホトレジスト層 の厚さをFTM-1形で測定した結果である。試料はOMR-83 ホトレジストで屈折率は1.54、露光済みのものである。この 結果,ホトレジストの塗装条件である回転数が大きいと薄く なり,粘度(cP)が高いと厚くなる。また回転数が大きいほ ど厚みのむらが少なく、粘度と膜厚の関係は直線に近づくこ とが分かる。

5 結 言

干渉計を用いて分光を行なうフーリエ分光装置(4)には、フー リエ変換のための計算処理が必要であり、分光光度計を用い た膜厚測定には、フーリエ 逆変換に相当する簡単な計算が必 要である。ところが、測定対象の膜の干渉による情報は、当 然干渉の光路差の関数として現われるのであるから, 干渉計 による膜厚測定(5)は最っも本来的であると考えられる。それ は干渉計の出力である干渉図形の中のピーク位置が, 直接 (比例定数を介するが) 膜厚を示して, 膜の表面状態とか, 光 源強度の変化とかに左右されないからである。次に近赤外偏 光干渉計を用いた膜厚測定の特長を列挙する。

(1) 測定時間が短い。参照測定も含め一検体10秒以下である。

シリコン ウェーハ上のホトレ 図13 ホトレジスト層厚さの実測例 ジスト層の厚さは粘度と回転数の関数となる。

(6) 測定光のスポット径が小さく(4mm), 局所性測定が容易 である。

(7) 測定可能な膜の種類が多く、応用範囲も広い。

終わりに本装置の実用化に当たり,日立製作所内外の各位 よりいただいた御協力に対し深謝の意を表わす次第である。

参考文献

(1) 間宮 「072形日立偏光干渉フーリエ変換分光システムとその 化学計測への応用(その2)」日立SIニュース,14, No.6 (1971)

(2) 完全非破壊非接触である。試料表面を汚損することがな V10 前処理が不要である。従来法では前処理に15分以上を要 $(\mathbf{3})$ した。 (4) 計算が不要である。膜物質によりスケール感度を切り換 え直読できる。 (5) 屈接率の測定が可能である(機械的方法で膜厚を測定)。

前田,井上 「オンライン可視・近赤外フーリエ分光装置」分 (2)光研究, 22, 133 (1973) (3) J.D.Mc Callum SCP and Solid State Technology Jan., 1967, p.43~44 西 「フーリエ分光法」電子総研調査報告, No. 169 (1970) (4)前田,井上 「FTM-1膜厚測定装置」第9回応用スペクトロ (5)メトリー東京討論会要旨集3 B05 (1973)

85