小特集・新しい工業計測・制御

U.D.C. 539. 42. 082. 4 : 534. 6. 082. 73-8

アコースティック エミッション計測法とその応用

Acoustic Emission Technique and Its Applications

アコースティック エミッション法とは,材料や構造物が破壊する前に発生する弾 性波(主に超音波)を検出して,構造物の安全性監視手段に役立たせようとする新し い手法である。特に,化学プラント,原子力機器など大形化する構造物の安全性確 保のために,製作時の検査,あるいは稼動中の監視手段として有力視されている。

本稿は、これらの用途に適したアコースティック エミッション計測技術の一般 的手法,新しい提案などについて述べるとともに、これらの計測手法の材料試験な どへの適用例や、アコースティック エミッションの応用に関する方向について述 べる。 佐藤弌也* Ichiya Satò 佐々木荘二* Sòji Sasaki

1 緒 言

近年,化学プラント,原子力施設をはじめとする各種プラ ント施設などの規模は大形化の一途をたどり,万一事故を起 こしたときの災害は,はかり知れないものがある。当然,事 故や災害防止に対する社会的要請が強くなり,そのための技 術開発が急務とされている。このような情勢にあって,各種 機器や構造物の安全性の確保のための監視手段として,アコ 例について述べるとともに, AEの応用範囲と実用化に当たっての問題点,将来の方向などについて言及する。

A E 信号の性質

AE信号を発生機構別に分けると、(1)塑性変形、(2)き裂の 発生、成長、(3)金属の相変態などによるものがある。また、

ースティック エミッション(以下, AEと略す)計測法が注目 されるようになった。

AEとは、材料が変形、若しくは破壊するときに解放され るエネルギーによって弾性波が発生する現象で、この弾性波 は、材料の表面に装着したAEセンサによって検出される。 このセンサ1個で、広い範囲の材料内の局部破壊を監視する ことができ、複数のセンサを使えばAE信号の到達時間差か ら発生位置を標定できる。AE法は、材料や構造物中での割 れなどの欠陥の発生時期と場所が即座に検出できるという特 長があるので、材料の塑性変形、破壊機構の研究に新しい観 測手段としてだけでなく、非破壊検査手段としても実用化が 進められている。また、特に巨大構造物の安全性監視及び製 品検査や品質管理のための新しい計測手段として、その期待 されるところは大きい。

ここでは、AE信号の性質、計測技術、一、二の適用実験

コロナ放電,流体の漏れや沸騰音,あるいは回転機の異常音 などはAEとは異質であるが,その計測法は共通に考えるこ とができる。

AE信号には大別して図1に示すような連続形と突発形の 二つがある。連続形AE信号は,主として塑性変形によるも ので,固体内での転位の際に生ずる鋭いパルス状の信号が多 数集まったものと考えられる。突発形AE信号は,き裂の発 生,成長に伴って瞬間的に発生し,連続形AE信号に比較し て振幅が大きく,発生源の位置標定などに利用される。

3 A E 計測技術

AE測定システムの一般的な構成は,図2に示すようになっており,種々のパラメータが測定できる機能を備えている。 本章では実用的見地からみて,特に重要なセンサ,AE発生の 動態観測法,多チャネル式AE発生源標定方法,雑音除去の

(a) 連続形(0.2V/div, 100µs/div)

(b) 突発形(1.0V/div, 100µs/div)

33

図 | AE信号の波形 連続形は、軟鋼の塑性変形によるAE波形例、突発形は、非磁性鋼のき裂進展によるAE波形例である。

202 日立評論 VOL. 58 No. 3 (1976-3)

図2 AE測定システムの一般的な構成 これは4 チャネルの例であるが,実際には1~32チャネルの間で使われている。

図3 センサの形式 図中(b), (c)の形式は電気的外来雑音に強いので現場向きである。

方法について述べる。

3.1 センサ

AE信号として取り扱う周波数は,数十キロヘルツー2メ ガヘルツ程度の範囲で,センサの振動子としてはチタン酸ジ ルコン酸鉛(PZT)などの圧電磁器が用いられる。

図3はセンサの代表的形式を示したもので、(a)は一般的な 不平衡形、(b)は平衡形、(c)は両用形である。平衡形センサは、 電気的外来ノイズの影響を軽減するために用いられ、両用形 センサは、平衡形センサとして用いれば空気中から伝搬して くる音響的外来雑音を相殺し、不平衡形センサとして用いる 場合には、上部ケース側振動子をダミー センサとして用い ることによって、外来ノイズの除去が可能となる。

3.2 AE発生の動態観測法

A E 発生状況の時間的経緯を表示する 2 チャネル式A E 測 定装置の構成を図4に示す。これは、時々刻々のA E 発生位 置をCathode Ray Tube(以下、C R T と略す)に表示できる ようになっていて、A E 発生源の位置は各センサへのA E 到 達時間差より求められる。 信号増幅部は、前置増幅器、ろ波器、主増幅器から成って いて、バックグラウンド ノイズや構造物からのA E 信号の周 波数成分があらかじめ確認されているならば、ろ波器の周波

数帯域を適当に選ぶことによって、不要の信号が除去される。 次に、比較回路によって摘出された2個のAEパルス信号の 時間差ΔTに応じて作られる位置信号を、蓄積形CRTのX 軸に与え、Y軸を時間的に掃引して、経過時間に対するAE の発生場所を刻々表示する。また、メモリを利用すれば、X 軸上の各点でのAE発生個数をY軸に表示することにより、 いわゆるヒストグラムが得られる。図5は図4の構成に基づ いて試作された装置の外観を示すもので、本装置では、セン サ間を64アドレスに分け、各アドレスには255個までのAE発 生個数を記憶できるようになっている。

3.3 多チャネル式AE発生源標定方法

パイプ ラインのような長い物,あるいは圧力容器のよう な広い面積をもつ巨大構造物にAE法を適用する場合には, 当然多チャネルシステムの導入が必要となる。そこで,ここ

では一般に用いられている電子計算機を用いた標定方法と、 日立製作所で開発した簡易形ゾーン標定法について述べる。 電子計算機を用いる方法は、碁盤の目のように多数のセン サを配置し、相対向するセンサ間におけるAE信号の到達時 間差を用いて、発生源の位置の演算を行なう。例えば、図6 のように正方形状に2対のセンサが配置されている場合、X 軸上のセンサR1~R2間の信号到達時間差⊿Txと、Y軸上

34

アコースティック エミッション計測法とその応用 203

図4 2チャネル式AE測定装置の構成例 本方式は、AEの動態観測が可能である。

法によって,各センサ間のAE発生状況が監視できることに なる。このような方法によれば,複雑な演算処理が不要とな り,装置を簡略にし,コストを低減する点で有利である。

3.4 **雑音除去の方法**

雑音除去は, AE法を実用化するうえで最も重要な課題の 一つであり, その対策を大別すると次のようになろう。

図5 2チャネル式AE測定装置の外観 図4で示した装置を製品化 したものである。

のセンサR3~R4間の信号到達時間差 ΔT_Y とから、それぞ れ同図に示すような二つの双曲線軌跡が描かれ、AE発生源 は両者の交点Pを演算することによって求められる。このよ うな演算を、電子計算機を用いて直接行なう方法と、あらか じめ作成された時間差と座標との組合せの表を素引すること によって結果を求める方法などがある。これらの方法は、圧 力容器などの製造時の試験に用いられつつあるとともに、供 用期間中検査や稼動中検査にも今後ますます多用されるもの と思われる。

しかし、AE計測技術の応用の拡大を図るには、できるだ け安価な多チャネルシステムが必要となる。その要求に応ず るための簡易形ゾーン標定法について説明する。図7は、パイ プラインのような長い形状の物の監視に適した一次元ゾーン 標定法の構成を示す。各チャネルのセンサからの出力は、増 幅検波されて比較回路を通り、その出力の立上りによって時 間幅Tという方形波を作る。次に、相隣接するチャネルの方 形波出力をアンド回路に入れて、それぞれ論理積をとる。例 えば、同図に示すようにセンサR3の付近にAE発生源があ ると、隣接チャネルの出力波形は同図に示すようになり、方

- (1) 周波数や振幅によって弁別する方法
- (2) 発生源の位置標定によって除去する方法
- (3) 空間フィルタによって除去する方法

上記中,(1)はAE信号と雑音との間に振幅や周波数特性の差異がある場合,これを利用する方法で特に説明するまでもない。

(2)は前述したようなAE発生源の位置標定,換言すれば 「戸籍調べ」によって弁別する方法であり,極めて有効な手法 の一つである。

(3)の空間フィルタによる方法としては、図8に示すような 方法がある。同図(a)は、マスタ スレイブ法と呼ばれ、マス タ センサの外側にスレイブ センサを設けて、観測範囲の外 側からきた雑音はスレイブ センサにまず受信されることを利 用してゲート回路を閉じ、出力を出さないことによって除去

35

形波の時間幅Tを次式のようにするならば,アンド回路出力 A3にだけ論理積信号が現われることになる。

ここに、L:センサ間距離v:供試材の音速

この論理積信号,あるいはその累積数を記録するなどの方 図6 AE発生源標定の原理 2対のセンサによる方式の場合を示す。

204 日立評論 VOL. 58 No. 3 (1976-3)

簡易形AEゾーン標定法 本方法は,パイプ ラインのような長い形状の物の監視に適している。

する。(b)は、2個のセンサにほぼ同時に到達した信号だけを AE信号として認めるコインシデンス法である。(c)は、前述 のゾーン標定法によって信号を選択し, 位相弁別回路によっ て信号の到達順位を検知して,遅れて到達するほうの信号だ けをゲート回路によって取り出す方法である。

号が記録されている。一方,図10は実験経過時間に対する AEの発生位置をCRTに表示した結果を示したもので、同 図より試料の弾性領域における受信信号は、端部から発生し た雑音であること, 塑性領域におけるAEの発生位置はリュ ーダース帯の進展と対応していることが分かる。このことは、 AE計測が材料試験のための新たな手段をもたらすことを示 唆する一つの例である。

4 適用実験例

材料におけるAE特性を観測しておくことは、構造物から のAE信号を監視するうえで重要である。ここでは、鋼材の 塑性変形やき裂の進展に伴うAEを3.に述べたAE計測法を 用いて観測した一,二の例について述べる。

4.1 鋼材の塑性変形によるAE発生過程の観測

鋼材の引張試験における塑性変形の過程が, AE発生の時 間的経過と関連して観測された例を紹介する。供試試料とし てSM41材の6号試験片(全長520mm, 平滑部長さ80mm, 板厚 5mm)を用いた。まず、図9は応力-ひずみ曲線とAE実効値 の経過を示したデータを示すもので、AEは上部降伏点以降 の降伏期間中に多量に発生している。ここで見られるAEは、 塑性変形によるいわゆる連続形AEである。しかし、同図に は試料の取付け部などで発生する雑音を含むすべての受信信

4.2 自然欠陥材の強度試験におけるAE

機器の大容量化に伴い,溶接構造物はますます大形化し, その強度面の評価が複雑,且つ困難になってきている。ここ では、大形の溶接構造物の引張試験にAE法を適用した結果 について述べる。供試試料は、板厚100mm、平行部幅500mmの 溶接用圧延鋼材SM41キルド鋼の溶接部付近に表層はく離欠 陥をもつ大形試験片である。

図11は、4個のセンサを用いてAE発生点を二次元的に位 置標定した結果を試験片上にプロットしたもので、同図に示 されているAEは、欠陥①及び①と印されている付近から、 ほぼ降伏点に近い27kg/mm²で発生し始め,引張強さ36.2kg/mm² で破断するまで続いていることが観測された。図12は破面の 外観を示し,破壊の起点が①及び⑪にあることが分かる。上

36

注:1. • AE 発生源 × 試験前に行なった超音波探傷による欠陥部 2. R1, R2, R3, R4:AE センサ 3. SM41Cキルド鋼,板厚100mm

図10 軟鋼SM41の塑性変形によるAE発生過程 リューダース帯の 進展に伴って, AEが発生している状況がよく分かる。

述の結果から、荷重が降伏点近傍になると欠陥の拡大が始まり、続いて合体、成長し、その過程でAEが発生したものと 推察できる。

この実験でも4.1の結果と同様に,試験片の取付け部からのAEと欠陥部からのAEとの弁別が,上述のように位置標定によって可能となり,欠陥の成長開始時期を確認できたことは重要な収穫と言える。

図II 大形自然欠陥材の引張試験におけるAE標定結果 破壊の起 点となった欠陥①, ①の近辺に降伏点以降からAEが集中して発生した。

図12 大形引張試験における破断部 欠陥①, ⑪が破壊の起点になっ たことが破面より分かる。

耐圧試験で全体の検査が可能となるため、検査の省力化、簡 易化及び工程短縮ができる。(2)欠陥の有害度、不安定度に対 応した検査情報が得られ、複雑な形状部、積層構造物など従 来の非破壊検査法が使えない個所の検査も可能になる。(3)稼 動中の設備・機器について材料中でのき裂発生を検出し、そ の成長を監視することにより、危険個所を指摘したり破壊を 予知する、いわゆるOn Stream Monitoringが可能となる。 現在、大形構造物の中でAEの適用が検討されているもの は、プラントの高圧容器、原子炉圧力容器、パイプ ライン、 埋設ガス管及び高圧タービンのような回転体、並びに圧延用 ロール、航空機、船舶、橋梁、建築物及び水力発電所のダム など多岐にわたっている。このうち、大形圧力容器の製造時

 $\mathbf{37}$

5 AEの応用分野

5.1 大形構造物の診断,監視への応用 大形構造物の診断や監視に対して,AE法を適用する場合の期待される効果として,次の3点が挙げられる。(1)1回の 206 日立評論 VOL. 58 No. 3 (1976-3)

の耐圧試験時に併行して行なうAE試験については,既に実 用の域に達し各方面でその適用が進められている。その中で 注目すべき動きの一つとして,アメリカExxon社において実 施しているAEの社内規定がある。すなわち同社では,ある 化学プラント用圧力容器の製作仕様の一部として,AE試験 必要範囲を破壊力学的な考察に基づいて定めている。

大形構造物のIn Service Inspection(I.S.I, 供用期間中 検査), On Stream Inspection(O.S.I, 稼働中検査)にAE 計測法を適用するに当たっては, 雑音対策, 高温対策など解 決すべき多くの問題がある。しかし, 近年多発しているコン ビナート事故の対策や, 原子力発電における安全性確保の問 題を考えるとき, 材料の破壊をいち早く予知し, 事故防止の対 策を講ずるためにAE法の実用化に寄せられる期待は大きい。

5.2 製品検査及び品質管理への応用

製品の強度試験にAE試験を併用すれば、定格値以上の過 大な強度をかけなくても、その安全性を確保することができ、 且つこの試験は全数に適用することも可能で、製品の品質保 証を行なうことができる。例えば、航空機、船舶、車両、土 木・建設・運搬用機械、発変電・製鉄所用機器などの応力集 中個所に使われる部材などのように、欠陥の存在が特に重大 事故に発展するおそれがあるものに対しては、AE試験を適 用してその有効性が期待されるので、関係分野で研究が進め られている。 A E 試験法を適用して,溶接の良否を判定できる可能性があ ることが報告されている。例えば,核燃料棒のTIG溶接に よる端蓋溶接部の管理に適用し,AEによる結果と金属顕微 鏡による写真とが良く一致し,極めて有効である例,また, スポット溶接の場合には,溶接強度が強いものほどAE量が 多いという関係があり,従来困難とされていた溶接管理への 適用性が期待されている。

このほか,材料の疲労強度,硬度,相変態など,材料特性のAEを適用した新しい実験手法が各方面で試みられており, その成果が発表されつつある。

6 結 言

以上,AE計測技術を中心に,その適用実験例及び応用面 について述べたが,その実用化についてはまだ緒についたば かりである。しかし,種々の材料や構造物について,破壊を 予知するのに役立つようなAE信号の発生が確証されている ので,雑音などに対する対策や有効な検出手法が確立される ならば,これらの問題について社会的要請の強い各種の産業 施設や,機器の安全性確保のための監視手段として活用され る日も間近いものと思われる。

1 2 2 3 0

次に、品質管理へのAE法の応用に関しては、溶接、熱処 理などの工程監視のためのAEの適用実験が各方面で進めら れている。溶接割れに関しては、溶接中に発生する高温割れ、 溶接後の冷却過程で発生する低温割れ、溶接後の熱処理時の SR(Stress Relief)割れなどがあるが、いずれの場合にも

参考文献

- (1) I. Satoh, S. Sasaki, I. Masaoka: Observation of Acoustic Emission in Tensile Test Using Source Location Technique: 第2回AEシンポジウム予稿集 (1974-9)
- (2) 日本高圧力技術協会編:講習会テキスト「アコースティック・ エミッションの基礎と応用」(1974-10)

30GHz帯GaAsインパット ダイオードを用いた 「プレート形発振器」 ^{日立製作所 水石賢-・宮崎 勝・他2名} 電子通信学会誌 58-10, 538 (昭50-10)

GaAsインパット ダイオードはミリ波帯 まで高効率動作する発振,増幅素子として 注目されているが,一般に素子インピーダ ンスが低いので使用回路は限られ,代表的 回路としてキャップ形,半同軸形回路があ る。ミリ波用のケース入りダイオードでは, キャップ形の場合は十分な性能が出ないの で半同軸形が多く用いられる。ここでは, これらの従来回路に比べ構造が簡単で,し かもミリ波帯でインパット ダイオードの性 能を引き出せるプレート形発振回路の構成 法を提案する。

プレート形発振器は,銅製プレートを方 形導波管の電界最大部に設けたスロットか ら導波管内に挿入し,プレート先端と導波 される一方, プレート部分はλg/4(λg: 管内波長)インピーダンス変成器となって いる。更に短絡面側のプレート部分は, プ レート端の電界強度が最大となる発振モー ド以外の不要モードを防止している。

プレート形発振器の特徴の一つに発振周 波数が広帯域にわたって変えられることが 挙げられる。例えば、キャップ形ではダイ オードと短絡面との距離を変えても、発振 周波数の中心値の数パーセントしか変化で きないが、プレート形では10%近く連続可 変できるため、周波数調整が容易となる。 また、キャップ形、半同軸形の場合、発振 帯域が狭いうえ回路調整中に不要モードが 発生しやすいなどの欠点があるが、プレー の関係が成り立つ。Z_pは,導波管寸法が与 えられたとき,プレートの厚さ及びプレー ト先端部と導波管H面との間隔から計算に より求まる。これらの値を調整することに より,ダイオードと導波管とのインピーダ ンス整合を行なうことができる。

30GHz帯マイクロ ピル形GaAsインパッ ト ダイオードをプレート形発振器に入れて 発振特性を測定した結果, 30GHz帯で平均 出力300mW, 効率7%を得ており半同軸形 発振器に匹敵する性能であった。このとき, Z_p は20~30Ωとし, ダイオード部のインピ ーダンスが1~3Ωとなるようにプレートを 調整してある。

以上のように,従来回路に比べ構造及び

