U.D.C. 654. 172: [621. 375. 826. 038. 825. 5:621. 382. 23]:681. 7. 068. 2

マルチモード光ファイバを用いたVHFテレビジョン 7チャネル多重伝送システムの開発

Development of VHF Multichannel Television Transmission System Using Multimode Optical Fibers

日立BH(Buried Heterostructure)レーザと日立広帯域光ファイバを組み合わせ たVHF帯放送波多重伝送システムを開発した。従来,これらを組み合わせた伝送 システムではファイバ伝送による特性劣化があり、ニーズはあったものの実用化に は至らなかった。実験的,理論的な検討の結果、その原因は第一に反射波によるレ ーザ発光特性劣化,第二にレーザのチップ温度変動による波長変動,第三に多モー ド伝搬の結果生ずるひずみと判明した。これらの問題点はファイバ端面の加工、レ ーザ温度コントローラの使用、及び太径低屈折率差ファイバの使用により解決され た。その結果、VHF帯の放送波7チャネルを2kmまで伝送できるようになった。 本システムは、近い将来CATVやテレビジョン共聴システムなどへの適用が検討さ れている。

滝沢 武 [*]	Takeshi Takizawa
平野 広*	Hiroshi Hirano
淺井孝弘*	* Takahiro Asai
小山行雄*	* Yukio Koyama
梶岡 博*	* Hiroshi Kajioka

日 緒 言

光ファイバ(以下,ファイバと略称する。)を用いた画像伝送 なうと、(1)時間的に特性が変動する、(2)伝送ファイバ長さが

システムとしては,既にベースバンドテレビジョン信号用の ものが開発され,道路,鉄道などを中心とする広い分野で実 用化されている。

光伝送コンポーネントの特性改善により、テレビジョン放送分野への適用も可能となっており、IF(中間周波数)帯での伝送の試みも行なわれている¹⁾。以上のシステムは、光源として発光ダイオードを用いたものであり、帯域や出力の点でVHF帯の多重伝送への適用は不可能であった。しかし、直線性の良好な半導体レーザの出現によって、テレビジョン共聴やCATV(Cable Television)への適用の可能性も出てきた^{2),3)}。実際にレーザとファイバを組み合わせて伝送実験を行

注:略語説明

LD(Laser Diode) APD(Avalanche Photo Diode) GI形(Graded Index形) 長くなるほど特性が劣化する、という欠陥が現われ、技術的 な実現は容易でないことが分かった⁴⁾。

その原因の第一は、伝送路中の反射波によってレーザ発光 特性が劣化すること、第二はチップ温度変動によってレーザ 波長が変動してしまうこと、第三は伝送路中で多モード伝搬 ひずみが生ずること、の3点であった。

これらに対して,実験的,理論的検討を進めた結果,第一 の原因に対しては、ファイバの端面を加工することにより, 第二の原因に対してはベルチェ素子を用いたチップ温度コン トローラを使用することにより,また第三の原因に対しては 太コア径,低屈折率差のファイバの採用により,いずれも問 題点は解決された。

その結果,伝送距離2kmまでVHF帯テレビジョン放送波 7チャネルの多重伝送が可能となった。

本論文では、VHFテレビジョン多重伝送上の技術的問題 点とその対策,及び伝送実験結果を中心に述べる。

2 VHFテレビジョン多重光伝送系の概要

2.1 光伝送系の構成

図1にVHFテレビジョン多重光伝送系の構成を示す。ア ンテナなどで受信されたVHF帯テレビジョン放送波各チャ ネルの信号レベルをそろえた後,光送信器で半導体レーザを 直接強度変調している。半導体レーザの出力光は広帯域GI (Graded Index)形ファイバで伝送され,光受信器のAPD (Avalanche Photo Diode)で電気信号に変換され,所定の信 号レベルに増幅される。本伝送系ではアナログ光伝送方式を 採用し、かつファイバとして一般的なマルチモードファイバ を用いているため、光送受信器の回路構成が比較的簡単であ

図 | VHFテレビジョン多重光伝送系の構成 本伝送系では, | 個の光源と | 本の光ファイバを用いてVHF帯テレビジョン放送波をそのまま光信号に変えて, 多重アナログ伝送する。

り,光源や受光素子とファイバの結合法,及びファイバの接 続法(融着接続,光コネクタなど)に従来技術が容易に応用で きるという利点がある。

* 日本放送協会営業総局 ** 日立電線株式会社電線研究所

65

508 日立評論 VOL. 63 No. 7 (1981-7)

2.2 システム目標性能

表1にVHFテレビジョン多重光伝送システムの目標性能 を示す。現在のテレビジョン共聴施設やCATVなど⁵⁾の同軸 ケーブル伝送系の一部(幹線系など)への適用を考慮して目標 性能を決めた。

これらの性能を達成する上で,特に光伝送系での信号の質 の劣化が問題となった。すなわち,半導体レーザ,ファイバ, APDなどはそれぞれ所要の性能をもっているにもかかわら ず,これらを組み合わせた光伝送系で,信号の質が劣化する という現象が生じたためである。以下,この問題点とその対 策について述べる。

表 | VHFテレビジョン多重光伝送システムの目標性能 特に光 伝送系では,信号の質に関する特性劣化が問題であり,伝送チャネル数が多い ほど目標性能は高度になる。

	項目	目標性能
	伝送周波数帯域	90~222MHz
般	伝送チャネル数	非隣接7チャネル
特	光送信器入力インピーダンス	75 Ω
性	光受信器出力インピーダンス	75 Ω
信	光送信器入力レベル	80dBµV
号	光受信器出力レベル	80dBµV
レベ	チャネル間レベル差	3dB以内
ル	チャネル内振幅周波数特性	±1.5dB以内
信	C N Ht*	42dB以上
号 の	相互変調**	-50dB以下
質	混 変 調**	-46dB以下

8 光伝送系の技術的問題点と対策

特に問題となる光伝送系の特性は, 雑音特性と非直線ひず み特性の二つである。従来の光伝送系では, これらの特性を 決める要因は, 光源及び受信系(受光素子, 受信増幅器)の雑 音特性や非直線ひずみ特性が主であると考えられていた。し かし, 半導体レーザとマルチモードファイバを組み合わせた アナログ光伝送系では, 上記以外の要因で雑音や非直線ひず み特性が劣化することが分かってきた。表2に, 特性劣化要 因及び対策を示す。これらの対策のうち, 今回は特に実現性 を重視して, 反射防止とレーザ発光特性の温度安定化, 及び ファイバ構造の最適化について検討を行なった。

3.1 半導体レーザ発光特性の安定化

半導体レーザの諸特性が反射光や温度変動によって影響を 受けることは既に知られている^{6),7)}が、VHF帯テレビジョン 多重光伝送などのアナログ光伝送でのひずみ特性や雑音特性 に及ぼす影響については明確にされていなかった。しかし、 今回の諸実験により、反射や温度変動を少なくすることが、 ひずみ特性や雑音特性の劣化を少なくするための必須条件で あることが明確になった。

3.1.1 ファイバ端面及びコネクタの反射防止

半導体レーザへの反射光としては、ファイバ入射端面、光 コネクタ、ファイバ出射端面などからの反射が考えられる。

注:* 信号レベルと雑音レベル(帯域幅 4 MHz)の比

- ** 希望搬送波と妨害波(他チャネル)又は妨害波相互の作用に基づくビート波による妨害で、画面上にしま模様が現われる。
- *** 希望搬送波が妨害波によって変調される妨害で, 画面上にウインドワ イパが現われる。

表2 VHFテレビジョン多重光伝送系の特性劣化要因と対策 伝送系としての特性劣化は、半導体レーザと光ファイバを組み合わせた場合に 生ずるものであるが、劣化要因を明確に分離することは非常に困難であった。

伝	送特性劣化要因	対 策	
反射	光再入射によるレーザ特性の変動	○光伝送路構成デバイスの 反射防止	
		●光アイソレータの使用	
	2. 温度変動によるレーザ発光	○レーザチップ温度の安定化	
多モード	波長の変動	●レーザ発光波長の多スペ クトル化	
の変動	3. レーザ強度変調によるファ	●シングルモードファイバの使用	
	イバ励振モードの変動	○マルチモードファイバ構 造の最適化	

この反射対策として次の三つの方法がある。

(1) 端面に無反射コーティングなどの加工を施し反射を少なくする。

(2) 端面形状を斜めにして、反射光が半導体レーザ側へもどらないようにする。

(3) 半導体レーザとファイバの結合部にアイソレータなどを 挿入し、反射光が半導体レーザへもどらないようにする。 このうち、(1)は加工法が難しく、(3)はハードが複雑であり、 かつ価格が高いという欠点がある。(2)の方法は、反射防止効 果も十分あり,更に構造が簡単で製作が容易であるという利 点をもっているため、入射端面(半導体レーザとファイバの結 合部)及び出射端面(ファイバとAPDの結合部)には、この方 法を採用した。一方, 光コネクタ端面に対しても同様の方法 が有効であるが、製作の点ではコネクタ端面は直角のほうが 好ましい。このため、光コネクタに対してはファイバ端面を 直角にし、かつ両側のファイバ端面同士を密着させる方法を 採用した。図2に半導体レーザとファイバを結合させたとき のひずみ特性と雑音特性の劣化例,及びファイバ端面斜めカッ トや高精度密着形コネクタによる反射防止の効果を示す。ま た図3には、ファイバ端面及び密着形コネクタの写真を示す。 以上のような対策により、ひずみ特性や雑音特性を劣化させる ことなく、半導体レーザとファイバを結合させることができた。

3.1.2 半導体レーザの温度安定化

レーザの波長が不規則に変動すると伝送モード構成が変化 してしまい,このためファイバの伝達関数が変化し,その結 果,雑音特性が劣化してしまう。この現象はファイバの伝送 距離が長いほど顕著になる。

半導体レーザの波長は一般的には1~2℃ごとに数オング

注:〇印は、実施した対策を示す。

66

ストローム変化(ジャンプ)し、かつジャンプ点には温度ヒステ リシスがあり安定な動作が得られる温度範囲は狭い。実験の 結果、半導体レーザチップの温度は、±0.2℃程度に安定化す る必要があることが分かった。図4にレーザの温度制御の原理 を示す。ここでは、レーザチップを取り付けたステムの温度を サーミスタセンサで検出し、設定値との誤差が小さくなるよう マルチモード光ファイバを用いたVHFテレビジョン7チャネル多重伝送システムの開発 509

図 2 反射による半導体レーザのひずみ, 雑音特性劣化例と反射防止対策による特性改善例 ファイバからの反射によって, レーザのひずみ特 性は劣化し, 時間的変動が大きくなる。一方, 雑音特性ではファイバ長さに対応した周波数に異常雑音が生ずる。

(a) ファイバ端面(斜め)

(b)密着形コネクタ

67

図3 ファイバ端面形状及び光コネクタの外観 ファイバ端面は斜めに研摩している(傾斜角は10~15度が望ましい)。また,光コネクタはプラグとスリ ーブによって,ファイバ端面が精密に密着するようになっている。

に、ペルチェ素子に電流を印加している。なお温度調節器に
 はPID(比例・積分・微分)方式を採用しており、室温で±
 0.1℃以内に温度安定化ができた。図5に温度変動によって波
 長変動が生じた場合、及び温度安定化時の雑音特性の一例を
 示す。以上のような温度安定化により、波長変動による雑音
 特性の劣化をなくすことができた。
 3.2 ファイバ構造の最適化
 上述のような対策により、反射やレーザチップ温度変動に
 よる伝送特性劣化といった問題点は解決されたが、長尺ファイバ伝送によるひずみ特性劣化は解決されなかった。本節で

は、ファイバ伝送によるひずみ特性劣化のモデルと理論的解析,及び確認実験の結果について述べる。

3.2.1 ひずみ発生モデルと理論解析

光ファイバは受動素子であるので,通常ファイバ伝送でひ ずみは発生しないはずである。しかし,変調角周波数ωで強 度変調されているレーザ出力は強度だけでなく励振モード数 も変調されるので,必然的にファイバ伝達関数もやはりωで 変調されてしまい,その結果ひずみが発生する。次に,この 点について簡単な解析結果を示す⁸⁾。

前提として、(1)ファイバ内でモード変換はない。(2)レーザ、 APDは完全な線形素子である。と仮定する。

レーザを $\cos \omega t$ に比例する電流で強度変調したときのファ イバ出力波形f(t)は次式で与えられる。

 $f(t) = \sum_{m=1}^{Mex} P(m) \cos \omega [t - \tau(m)] \cdots (1)$ ここに、Mexは励振モード数、P(m)はmモードの励振電力、 \tau(m)は群遅延時間差で次の(2)式で表わされる。

ただし、L: ファイバ長さ、C: 光速、m: コア中心の屈折 $率、<math>\alpha: グレーディング指数、\delta\alpha: 最適なグレーディング指数か$ $らのずれ、<math>\Delta: コアとクラッドの比屈折率差、M: 全伝搬モ$ ード数である。

ここで、(1)式のMexを次のように仮定する。

同一パッケージに収容し、パッケージ全体をベルチェ素子で冷却している。

68

 $Mex = Mav + \delta M \sin \omega t \cdots (3)$ (1)~(3)式から,基本波 (ω) 成分と二次高調波 (2ω) 成分との振 幅比を求めると、二次ひずみとして次の(4)式が得られる。

> $\eta_{2nd} = 20 \log \left[\frac{\sqrt{2\lambda}}{16C} \cdot \frac{L \cdot \sqrt{\Delta} \cdot \delta \alpha \cdot \delta M \cdot f}{a} \right]$ $(dB)\cdots(4)$

ここに、a:コア半径、 λ :レーザ波長、f:変調周波数 (4) 式はファイバ伝送に基づく二次高調波ひずみの伝送パラメ ータ及びファイバ構造パラメータ依存性を示す式である。こ れからファイバ構造としては、コア半径 a が大きく、比屈折 率差Δが小さく,最適グレーディング次数からのずれδαが小 さい(モード分散の少ない)ほどひずみの劣化が少ないことが 分かる。またファイバ長さが長くなると20log L(dB)でひず みは劣化する。

3.2.2 実験検討結果

図6に二次ひずみの長さ特性に関する計算値と実験結果を 示す。同図の計算値は、 $\delta M = 1$ としているが、これは例えば レーザとファイバのギャップを100µmとした場合に、レーザ の指向性の変化で $0.1 \sim 0.2$ 度の変化に対応する。また、 $\delta \alpha$ は ファイバの帯域特性実測値から逆算し、 $\delta \alpha = 0.05$ とした。こ の結果から、 $\delta M = 1$ で、ガウス形励振($\sigma = 6$)*1)条件の計算 結果は実験値とほぼ一致しており,上述のひずみ発生モデル がファイバ伝送によるひずみ発生機構をよく説明していると 考えられる。

また,ファイバ試作を行ない伝送実験を行なった結果,コ ア径120µm, 比屈折率差0.6のファイバを用いて, ひずみ特性 をかなり改善できることが確認できた。

4 伝送実験結果

実験システム構成と装置の概要 4.1

図7に実験システムの構成とVHF帯テレビジョン放送波 の周波数配置を示す。また、図8に光送・受信器のブロック 図,及びファイバの構造を示す。アンテナで受信されたテレ ビジョン放送波(1, 3, 4, 6, 8, 10, 12チャネル)は、レベル コントローラで信号レベルをそろえられた後, 光送信器で各 ● は、ファイバⅡの測定値

図6 二次ひずみのファイバ長さ特性 ガウス形励振($\sigma = 6$)条件の 計算値と実験値はかなりよく一致している。

チャネルの光変調度が10%となるようなレベルに増幅され、 半導体レーザの出力光を直接強度変調する。2kmのファイバ を伝送された光信号は光受信器のAPDで電気信号に変換さ れた後、プリアンプ、メインアンプで所定のレベルまで増幅 され、VHF帯テレビジョン信号として出力される。

69

VHF帯テレビジョン放送波チャネル配置

VHF帯テレビジョン放送波7チャネル伝送実験システムの構成 図 7 本システムでは、VHF帯テレビジョン7チャネル(1, 3, 4, 6, 8, 10, 12チ ャネル)を1本の光ファイバで伝送している。

※1) (4)式では全モード均一励振 [P(m) = -定]を仮定しているが、ガウス形励振 [$P(m) = e^{-\frac{m^2}{2a^2}}$]を考えた場合、 $\sigma = 6$ で(4)式よりもひずみが約6 dB 改善される。

512 日立評論 VOL. 63 No. 7 (1981-7)

図8 光送信器,光受信器のブロック図及びファイバの構造 レーザの光出力は温度制御,及びAPCによって安定化されており,受信器出力はAGC (自動利得調整)なしでも安定である。

表3 伝送実験結果(半導体レーザ,光ファイバ及び光受信器出力 信号の特性) 光ファイバ2km伝送後のテレビジョン信号は,いずれも目 標性能を満足しており,良好かつ安定な画質が得られた。

項	目	特性
	波長	826nm
レーザの特性(HLP-3400)	しきい値電流	26.5mA
温度=25℃	直流バイアス電流	37.5mA
	平均光出力	5mW
光ファイバの特性 <i>L</i> =2km	伝送損失	5.5dB
	伝送帯域	800MHz
	融着接続損失	0.2dB/I箇所
	コネクタ接続損失	0.6dB/I箇所
光受信器出力信号の電気的特性	信号レベル	80dBµV
	CN比	43~45dB
	相互変調	-52dB
	混 変 調	-46dB

4.2 伝送実験結果

表3に本実験に使用した半導体レーザの特性,並びにファ イバの特性及び光受信器出力信号の特性を示す。光ファイバ 2km伝送後のテレビジョン信号は,いずれも目標性能を満足 しており,画質の点でも良好で光ファイバ伝送による劣化は みられなかった。特に,従来は時間的に画質が劣化するとい う現象がみられたが,今回の実験では時間的にも安定してい る。また,実際にファイバをケーブル化(スペーサ形ケーブ ル⁹⁾)して,架設振動実験などを行なったが,画質劣化はみら れを実現するための対策として、反射防止や温度制御による レーザ発光特性の安定化、及びファイバ構造の最適化を行な い、2kmの伝送実験で良好かつ安定な画質を得た。

VHF帯テレビジョン多重光伝送は、ケーブルが軽量であ ること、誘導妨害を受けないことなどの特長を生かして、テ レビジョン共同受信施設などへの適用が可能であり、更に実 用化に向けて検討を読けてゆく予定である。

将来は,更に長波長帯光源とシングルモードファイバを用いた長距離伝送や光デバイスの進歩により,光分配ネットワ ークなどへの適用も期待できる。

本開発を進めるに当たり,種々御指導をいただいた関係各位に対し,深く感謝の意を表わす次第である。

参考文献

- 1) 池内:光ファイバによるテレビ中継放送所の雷害対策, テレビジョン学会技術報告, RE78-18(昭53-7)
- 2) 長野,外:埋め込みヘテロ構造半導体レーザの変調特性,電子通信学会信学技報,OQE77-19(昭52-6)
- 3) 長野,外:半導体レーザを用いたVHF帯光アナログ多重伝送の検討,電子通信学会信学技報,CS78-162(昭53-12) このほかに,昭54電子通信学会全国大会S12-6,7,8などがある。
- 滝沢,外:マルチモードファイバによるVHF-TV多重伝送, 昭55電子通信学会全国大会No.266(昭55-3)
- 5) 郵政省CATV技術研究会編:CATV技術,日本有線テレビジョン技術協会(昭50-4)
- 6) 例えば,昭55電子通信学会全国大会No.791~794など,半導体 レーザ特性への反射光の影響については数多くの研究検討が

れなかった。

5 結 言

 $\mathbf{70}$

半導体レーザと広帯域GI形ファイバを用いて,1個の光源と1本のファイバでVHF帯テレビジョン放送波7チャネルを伝送距離2kmまで多重伝送することが可能となった。こ

行なわれている。

- 7) Hitachi Laser Diode Application Manual (昭54-6)
- 8) 梶岡,外:VHF-TV多重伝送用GIファイバの検討,昭55電 子通信学会全国大会,No.327及び昭56電子通信学会全国大会, No.926(昭55-3,昭56-4)
 9) 中居,外:VHF多重伝送用光ファイバケーブルの試作と伝送

実験,昭56電子通信学会全国大会No.1023(昭56-4)