U.D.C. [669. 18:621.746.552.047 + 621.785.1 + 621.771]-932.2

直接圧延を目指した鋼用ロータリキャスタ Rotary Caster for Direct Rolling of Steel

溶鋼から一挙に圧延製品を製造する直接圧延システムは,従来連続鋳造設備の単 機能力が圧延設備に比較して→→→と非常に低いことが最大の隘路となり,両者を 直結することが困難でいまだに実現されていない。日立製作所は,この連続鋳造設 備単機能力を飛躍的に高めて圧延設備と同等にする鋼用ロータリキャスタの開発 に成功し,その後3年間にわたる実操業と各種実用化開発を鋭意進めてきた。

その結果, 圧延設備と同一水準の鋳造能力を30時間以上の長時間にわたり安定継続して確保でき, かつ鋳片を適正圧延入側温度1,100℃以上に制御可能なことを立証し, 鋼用直接圧延システムの実現性を世界に先駆けて明らかにした。

遠藤宗宏*	Munehiro Endô
二木隆夫*	Takao Futatsugi
相沢達志**	Tatsuji Aizawa

37

日 緒 言

溶鋼から一挙に圧延製品を製造して、大幅な省エネルギー・ 高歩留まり・省力化をもたらし、従来の熱間圧延プロセスに 大改革をもたらす直接圧延システム実現に向け、画期的な高 速鋳造可能なロータリキャスタ方式の開発を進め、実用1号 機の実現に成功したことは既に報告したとおりである¹⁾。

その後引き続いて、実用2号機も納入し、前後約3年に及

表 1 納入設備仕様一覧表

設備の代表的仕様例を示す。

項目	納入先	大三製鋼株式会社 (号機)	徳山工業株式会社 (2 号機)			
1.溶 解 炉	容 量	電気炉 25T/ch	電気炉 45T/ch			
	鋳造断面(初期)	幅160/190×厚さ130(mm)	幅 35/ 65×厚さ 28(mm			
o de 14 14 92	鋳造輪外径	3,000mm	3,000mm			
2	鋳造速度	最大 5.2m/min	最大 5.4m/min			
	ベルト寸法	幅280×厚さ2.6(mm)	幅250×厚さ1.6(mm)			
	取鍋底面高さ	4,640mm	4,610mm			
	圧延機配列	V-H(各I基)	V-H(各丨基)			
	圧延断面	30角,(40~ 60)× 30	115~125角			
3. 圧延搬出装置	圧延材出側速度	最大 6.9m/min	最大 7.5m/min			
	剪断機	油圧ペンジュラム方式	油圧ペンジュラム方式			
	圧延機位置 (鋳造輪-Vミル間)	24,600 mm	23,800mm			
4.設備全般	ストランド数 鋳造・圧延能力 生 産 量	Iストランド/基 最大 50t/h/基 約 6,000t/h/基 (バッチ操業)	ーストランド/基 最大 45t/h/基 約 20,000t/h/基 (連々鋳操業)			

ぶ操業実績から当初の目的である高速鋳造特性を用いて, 圧 延設備との直結化が可能であることを実用面で世界に先駆け て立証した。

本稿では,設備配置,長時間安定高速鋳造能力,鋳片温度 制御など直接圧延システム成立の基本要件に対する本方式の 設備的諸特性を実測データに基づき報告する。

2 設備仕様

本方式の納入設備仕様及び配置例は,表1,図1に示すとおりで,本設備は下記のような特長をもっている。

(1) 高速鋳造能力

ストランド当たり最大50t/hと圧延設備と同等の生産能力

(2)	タ	ン	デ 1	シ	г	5	ガ	イ	ド	テ	-	ブ	ル	8	スプレ	ーガイド及	しびダミーノ	バー装置		油圧ダイヤゴナルシヤー
3	鋳	造	輪	装	置	6	引	抜	Ę	ンヨ	۴р	-	ラ	9	均	熱	装	置	12	デプレッシングテーブル

図1 実用2号機設備配置図 設備高さが低く,既設圧延工場内にも設置可能なことが分かる。

*日立製作所日立工場 ** 日立製作所日立研究所 工学博士

128 日立評論 VOL. 65 No. 2(1983-2)

図2 タンディシュー鋳造輪間溶鋼注入方式 特殊形状の高品質タン ディシュンズルを使用し、溶鋼ストリームの長時間安定化を図っている。 などにより開発初期段階で実用化水準まで到達し、最終的に はタンディシュ耐火物寿命に制約される面が強かった。タン ディシュノズル形状及び注湯方式は図2に示すようにして、 操業技術の改善、耐火物材質の進歩により長時間連続運転記 録は図3のように飛躍的に伸長し、現状ではタンディシュを 交換することなく30時間以上の連続運転が可能となっている。 これは、ほぼ仕上圧延機ロール寿命に匹敵するものである。 3.2 鋳造速度安定性

本ロータリキャスタ方式では完全自動運転システムを採用 しており、鋳造輪内湯面は r線湯面計を用いて鋳造速度にフ ィードバックすることにより自動制御されている¹⁾。湯面及び 鋳造速度は実測例を図4に示すように4.2m/minという高速鋳 造であるにもかかわらず、インラインミルを含む全ライン一 括制御で湯面変動(ΔH mean)=15mm

速度変動(*ΔV*mean)=0.08m/min(約±1%相当) と非常に安定した操業状態を保持しており,仕上圧延機を直 結しても十分速度制御が可能であることを立証した。

を確保できる。

(2) 低設備高さ

取鍋(とりべ)底で4.6mと従来の→以下となり, 圧延工場と 同程度の建屋高さに収容可能である。

(3) 均熱炉配置

鋳片温度制御を行ない、適正圧延温度を確保できる。

(4) 圧延機直結

インラインサイジングミルを直接配置し,各種鋳片寸法に 粗圧延するとともに,直接圧延システムの可能性を立証した。

3 鋳造特性

38

鋳造・圧延設備を直結するための所要性能のうち,長時間 連続運転,鋳造速度安定性及び高速鋳造能力について以下に 詳述する。

3.1 長時間連続運転(連々鋳操業)

操業の安定性,製品歩留まり向上の観点からできるだけ長時間連続運転することが望まれる。本ロータリキャスタ方式 では,当初懸念された金属ベルト寿命は,強冷却方式の採用

図3 連続運転時間月間最長記録推移 タンディシュ交換をしない連続運転時間記録は、設備稼動経過とともに伸長している。

図4 鋳造輪内湯面・鋳造速度記録 鋳造速度を調整して,鋳造輪内湯面を自動制御している。取鍋交換による長時間多連続鋳造時も安定して操業が可能である。

直接圧延を目指した鋼用ロータリキャスタ 129

また, 取鍋交換を行なう連々鋳継ぎ部でも最大速度変化 (*ΔV* max)は0.2m/min(約±2.5%相当)程度であり、変化率も 小さいことから、品質面も含め実用上問題のないことを確認 した。

3.3 高速鋳造能力

本ロータリキャスタ方式での鋳造能力実績を図5に示す。 同図は従来方式の連続鋳造設備との対比が容易なように, 鋳 片寸法を鋳造断面積で代表して,鋳造速度及び鋳片能力(ス トランド当たり)を示したものである。鋳造能力実績は、連々 鋳操業での溶解炉能力とのバランスなど実操業面で種々の制 約を受けるため、設備能力の限界を示すとは言えないが、既 に単一ストランドで35~50t/hと圧延設備と同一水準まで到達 可能なことを実用機で明らかにした。特に、小鋳造断面の範

図7 均熱炉内鋳片表面温度復熱状況 炉内での復熱は20秒程度で完 了し, その後は安定した状態で推移する。

囲で従来方式よりも約3倍と大幅な鋳造能力の増大を実現し たことは、直接圧延システムの実現に非常に効果的である。

圧延特性 4

連続鋳造速度の比較 🗵 5 直接圧延システムに必要な鋳造速度をロータ リキャスタ方式は実用機で達成した。従来方式は圧延設備能力のよーまであった。

鋳造された鋳片を直接圧延するためには、その温度制御が 重要である。鋳片温度分布及び直接圧延時の温度条件につい て以下に詳述する。

4.1 鋳片温度分布

鋳片表面温度測温の代表例として, 側面中央及び下コーナ を採り、実測例を図6に示す。全般的に鋳造輪、矯正ナイフ 部での強冷却後No.1ピンチローラまでで復熱し、その後スプ レー装置内で緩やかに温度降下してゆくが,均熱炉内で再度 鋳片表面が昇温均熱化し、面中央で1,150℃、コーナ部で1,100 ℃と適正圧延入側温度となってインラインミルに供給されて いる。これは上面及び上コーナとも、同一傾向である。

この均熱炉内部での温度変化について、特別に熱電対を鋳 片表面に固定して連続測温した結果を図7に示す。均熱炉は バーナなどによる炉内加熱をいっさい行なわず, 断熱雰囲気 での鋳片内部熱エネルギーだけによって表面温度復熱効果を 期待するもので、実測例では約20秒という比較的短時間で

鋳片表面温度変化 凶 6 スプレー冷却後の鋳片は,均熱炉 内で圧延適性温度まで回復する。

39

図8 直接圧延システムでの生 産能力と圧延鋼片温度の関係 適性生産能力以下では,圧延の途中で 圧延温度限界以下に鋼片温度が低下し, 圧延不能となるので,連続鋳造設備と して35t/h以上は必要となる。

面中央部 昇温 30℃ (到達温度 1,160℃) コーナ部 昇温 60~80℃ (到達温度 1,110℃) と適正圧延入側温度1,100℃以上を実現している。本均熱炉は, コーナ部温度確保に特に効果的であるだけでなく,鋳造初期 及び終了時での低炉壁温度・鋳造速度低下状況にも圧延温度 確保に大きく寄与しており,実操業時でも温度低下によるイ ンラインミルでの鋳片表面圧延割れは発生していない。

k:熱通過率(kcal/m²·h·℃)

tm: 圧延材平均温度(℃)

tr: ロール内部温度(℃)

により算出される。なお詳細は引用文献²⁾に述べてあるので 省略した。

4.2 直接圧延システムの温度条件

前章の鋳片温度条件を基礎に、本ロータリキャスタ方式を 用いた直接圧延システムでの材料温度変化状態を検討し、そ の一例を図8に示す。温度計算は条鋼圧延でのプログラム2)を 用いて行なったもので、その概要は次の(1)式によって示される。 ここに Δtn (n-1), n番スタンド間の温度変化 △tsn 材料表面からの対流,輻射による温度変化 △trn 圧延加工・ロール接触による温度変化 $\Delta tsn \exists \Delta tsn = tn - t(n-1) \cdots (2)$ $\{\,\alpha(\,t-ta\,)+4\,.\,96\,\times\,10^{-8}\,\varepsilon(\,T^4-\,T^4a\,)\,\}\,sdldz$ $= An\gamma c \cdot dldt \cdots (3)$ ∆trn lt Qpn = ULn (圧延加工項) ……(5) $Qrn = 2 lmbmk(tm-tr)(u-\mu 接触項) …(6)$ ここに α :対流熱伝達係数(kcal/m²·h·℃) *ta*:空気の温度(°C) ε:圧延材の輻射率 *s*: 圧延材の周長(m) T: 圧延材の絶対温度(K) Ta: 空気の絶対温度(K) A: 圧延材の断面積(m²) γ : 圧延材の比重量 (kg/m^3) C: 圧延材の比熱(kcal/kg·℃)

材料温度は大気放冷とロール接触による温度降下で仕上圧 延機入側付近で最低温度 Tminになり、その後は圧延速度上昇 により加工エネルギー Qrnの効果が相対的に大きくなり、前 記冷却要素を補償して温度低下は防止される傾向にある。こ の際、Tminが仕上圧延限界温度 Tc以上であることが必要で あるが、Tcに関しては従来経験的に850~900℃程度と言わ れており、本報では最近の低温圧延の傾向も加味し、r相析出 限界の Tc=870℃と設定した。

本条件から図8の計算結果をみると、Tminは生産能力に大きく影響される傾向をもち、生産能力が35t/h以上なければ Tmin≥TCを満足することが難しく、連続鋳造設備を圧延設 備に直結する場合、これと同等の鋳造能力を要求されること になる。これに対し本ロータリキャスタ方式は、図5から明 らかなように実操業レベルでこれを達成しており、直接圧延 システム実現の基本的要件を連続鋳造設備として初めて満足 することができた。

5 結 言

ロータリキャスタ実用設備の3年に及ぶ実操業結果に基づき、本ロータリキャスタ方式の実用性を確認するとともに、
(1)低設備高さの設備配置
(2)高速鋳造能力・長時間安定連続運転
(3)鋳片温度の適正圧延入側温度確保
などを立証し、今後更に仕上圧延設備と直結して、直接圧延

システムを実現する可能性を世界に先駆けて明らかにした。

終わりに、本方式の実機操業に際し終始御尽力をいただい た徳山工業株式会社の関係各位に対し、深謝の意を表わす次

Q_p: 塑性変形発熱量(kcal/h)
Q_r: ロール伝達熱量(kcal/h)
V: 圧延材出側速度(m/s)
U: 860(kcal/kW・h)
L: 圧延動力(kW)
lm: 平均接触弧長(m)
bm: 平均接触幅(m)

40

第である。

参考文献

 山本,外:新高速連続鋳造設備鋼用ロータリキャスタ,日立 評論,62,6,433~438(昭55-6)
 清水,外:棒鋼圧延におけるパススケジュール計算の機械化, 日立評論,53,7,639~645(昭46-7)