小特集 半導体製造装置と周辺設備

U.D.C. 621. 3. 049. 774' 14. 001. 4: [621. 385. 833. 2: 537. 533. 8. 08]

電子ビームLSIテスタ

低速の電子ビームで損傷なしにLSIを診断する-

Electron Beam LSI Tester — Damage-free LSI Diagnosis Using Low Energy Electrons —

電子ビームでLSI内の電位波形を測定するLSIテスタを開発した。この装置は電 子ビーム系に電界放射電子銃を用い, 1kV以下の低加速電圧で動作できる。低圧化 により、LSI内の絶縁物に電子が帯電する現象がなくなり、また素子の電子照射損 傷を無視できる程度に小さくすることができた。探針としての電子ビーム径は0.1 μmであり、テスタ性能は電圧分解能0.1V、時間分解能1nsであった。LSIの駆動 と照射パルス ビームの位相を繰返し変化させる高速多数回位相走査法を開発し,保 護膜を被覆したLSIでも測定できるようにした。64kビット・MOS素子のメモリア レー部の信号波形を直接に測定することができ、本装置が超LSI素子の動作解析に 有効であることを確認した。

戸所	秀男*	Hideo Todokoro	
福原	悟*	Satoru Fukuhara	
湊	修*	Osamu Minato	
堀	陵—*	Ryôichi Hori	

言 緒 1

半導体素子の微細化傾向は著しく,その線幅は開発段階で は既に1µmを切ろうとしている。微細な加工技術の重要性は いうまでもないが、これと並行して、このような素子の微細

以下,日立製作所が開発した電子ビーム テスタの原理,構 成,特徴及びその応用例について述べる。

部分の動作解析や評価技術も,設計・開発期間の短縮や品質 の管理向上の観点から不可欠なものである。

従来は, 集積回路をブラックボックスとして, 入出力テス トの結果から回路の動作状態を推定する方法が用いられてき た。また、より正確な動作状態を知ろうとするときには、金 属の針(先端径約5µm)を直接回路の配線に接触させて検査す る方法をとっていた。しかし、入出力テストでは、あくまで 回路内の動作状態を推定するにとどまること,及び寸法制約 から超LSIには適用できない、などの問題があった。

これに対して、 電子ビームは素子に機械的破壊を与えない ことや、容易に1µm以下に細く絞ることができることから、 電子ビームを針としてLSIの動作を解析する,いわゆる電子 ビーム テスタに大きな期待が寄せられていた1)~10)。このよ うなニーズに基づき、今回、日立製作所は電子ビーム系に電 界放射電子銃を用いた低加速電圧の高性能な電子ビーム テス タを試作した。この装置を64kビットメモリなどの動作解析に 応用して、これが今後の超LSI開発の強力な武器になり得る ことを確かめた。

2 電子ビームによるLSIテストの原理

電子ビームLSIテスタは、走査形電子顕微鏡を基本としこ れにテスタとしての機能を付加したものである。LSIテスタ では、LSI内のメガヘルツ程度の高速電位波形を測定する機 能を必要とする。しかし、従来の走査形電子顕微鏡では試料 からの微弱な二次電子を信号とするので、このような高周波 領域を実時間で観察することは不可能であった。この問題を 解決するために、本装置では、電子ビームを高周波のチョッ ピングでパルス化しこれを試料に照射する,いわゆるストロ ボ法を用いた。これに、二次電子のエネルギーを分析するエ ネルギー フィルタを設けて、電位検知機能を付加した。

2.1 電位測定の原理

零電位にある試料に電子ビームを照射すると、 そこから平 均で約2eVの運動エネルギーをもつ二次電子が放出される。 この運動エネルギーは、 試料に電位が印加されるとこれに対 応した値だけシフトする。図1(a), (b)にこの様子を示す。こ のシフト量を検知すれば試料の電位を知ることができる。同 図(d)に、この電位測定を行なう原理及び回路構成を示す。測定

33

電位測定の原理構成図 試料上に半球上のグリッドを設け、二次電子のエネルギーを選別する。グリッドを通過した二次電子を検出し、この値が一 × I 定になるようにグリッド電圧を回路的に制御する。グリッド電圧の変化量が試料の電位変化に対応する。

日立製作所中央研究所

(a)

490 日立評論 VOL. 65 No. 7(1983-7)

試料を囲むように半球状のグリッド(エネルギー フィルタ)が 設けられている。このグリッドは比較増幅器の出力に接続さ れている。通常の動作では接地に対し数ボルト負電位である。 このグリッドが作る負電位のポテンシャル壁を乗り越えた二 次電子の量を検出する。この値を基準値と比較し、その差が 常に零になるように、グリッド電位をフィードバック制御す る。同図(a)の斜線部がポテンシャル壁を乗り越えて検出され る二次電子量である。試料電位が変化すると、同図(b)のよう に検出量が増加する。するとこの回路の動作でグリッド電位 がより負電位になり、再び検出量が同一になる。このとき、 グリッド電位の変化量は試料電位の変化量と一致するので、 グリッド電位の変化量から未知の試料電位を知ることができる。

2.2 ストロボ法の原理

電子ビームは偏向器とチョッピング アパーチャの組合せで パルス化される(図3参照)。この偏向器への供給パルス電圧 とLSI駆動回路間を同期させると、パルスビームはLSIの同 期電圧の特定位相の時点だけLSIを照射する。この結果、高 速で変化している現象が変化しない現象として観察される。 また、両者間の同期を少しずつずらす(位相を変化させる。)と、 試料内の周期現象がゆっくりと動いて観察される。二次電子 の検出に先に述べた電位測定法を付加すれば、電子ビーム照 射箇所の電位波形を観測できる。また、電子ビームでLSI上 を2次元的に走査すれば、LSIの電位分布を2次元像として

も観察することができる。

3 装置の構成と特徴

3.1 装置の構成

34

図2に装置の外観を、図3に構成図を示す。本装置の主な 特徴は、FEG(電界放射形電子銃)を用いて1kV以下の低加 速電圧化を図ったこと、位相の走査に高速で多数回繰返し行 なう方法を採用し、保護膜の付いたLSIでも測定できるよう にしたことである。

FEGは日立製作所が他社に先駆けて実用化した高輝度電子 銃で、走査形電子顕微鏡の高分解能化¹¹⁾や、透過形走査電子 顕微鏡による原子の観察¹²⁾に用いられたものである。FEGは 従来の熱電子放射形に比較すると、輝度で10³倍以上も高く、 放射電子のエネルギーのばらつきも0.2eVと小さい(熱電子銃 では2eV)。この結果、1kVの低加速にしても、電子ビーム 径を0.1μm以下に絞ることができる。表1に種々の電子銃を 用いたときのプローブ径を示す。熱電子放射ではLaB₆(ラン タンボライド)を用いても0.5μmが限界である。

電子銃から放射された電子は, 偏向器でパルス化されたの

注:略語説明 CPU(中央処理装置)

図3 電子ビーム LSIテスタの構成図 電界放射電子銃で IkVの電子ビームが作られ, 偏向器でパルス化され, 磁界レンズでLSI上に細く絞られる。

表 | 電界放射電子銃と他の電子銃との性能比較 輝度が高いほど 細いプローブを得ることができる。 | kVではエネルギーの広がりもプローブ径 に大きく影響する。このため,熱放射形では0.5µmが限界である。

電子銃	電子銃の輝度 (A/cm ² ・sr)	エネルギーの広がり (eV)	得られるプローブ径* (µm)
電界放射電子銃	$\sim 10^8$	0.2	0.1
熱放射電子銃 (LaB ₆ 形)	$\sim 10^5$	2	0.5
熱 放 射 電 子 銃 (ヘアピン形)	$\sim 10^4$	2	0.8

注: * 加速電圧 | kVで | × 10⁻⁹ Aの電流が得られるプローブ径

ちに磁界レンズでLSI上に集束される。検査されるLSIは真 空の試料室内で動作させる。LSIを駆動するために試料室前 面に電流導入端子(直流用10本,高周波用22本)が設けられて いる。電位波形は,SEM(走査形電子顕微鏡)像を見ながら測 定点を確認し、そこに電子ビームを点照射し、位相を徐々に 変えることで得られる。

図2 電子ビーム LSIテスタの外観 左から2番目が本体で, 矢印の 部分に試料が入っている。右端は位相制御とデータ処理をするCPU(中央処理 装置)である。 一つの電位波形を得るには,原理的に位相を1周期(360度) だけずらせばよい。本装置では,新開発のディジタルスイッ チを用いた高速位相走査回路を採用した。この位相走査方法 では,1回の位相走査に要する時間は10msと短く,これを多 数回繰り返し信号の積算を行なう。典型的な例では,4,096回 の積算を行なう。この場合,一つの波形を得る時間は40秒

電子ビームLSIテスタ 491

表2 電子ビームLSIテスタの主仕様 電子ビームテスタでは、電子 ビームの走査で像を観察し、同一電子ビームで波形測定を行なう。このため、 電子ビーム径として0.1µm以下を必要とする。波形の時間的変化をInsで、電 圧変化を100mVで検知する。

No.	項目	内容
1	電子ビーム径	0.1µ
2	電位測定	(1) 測定範囲 +15~-15V (2) 分 解 能 0.1V
3	時間分解能	Ins
4	電子銃	冷陰極形電界放射電子銃
5	観 測 モ ー ド	 (1)像モード 通常二次電子像 ●電位分布像 ●ストロボ電位分布像 (2)波形モード
6	LSI 試料台	DIP形パッケージ用ソケット
7	加速電圧	500∼I,000V

(4,096×0.01)である。この高速多数回位相走査法は、保護 膜を被覆したLSIを観察するために開発したもので、この効 果については、4章で述べる。表2に本装置のテスタとして の性能を示す。

図4 加速電圧と帯電の関係 PSG(リンガラス:厚さ0.6µm)を電子 照射したときの表面電位の変化を示している。入射ビームが1.5kV, 2kV, 3kV では急激な負電位の上昇が生じている。

に正電位側にドリフトしているのは、電子ビームで試料が徐 徐に汚染し二次電子放出量がしだいに減少するためである。

3.2.2 電子線損傷の軽減

電子ビームによるLSIテストでは、素子に機械的な損傷を 与えることはない。しかし、電子ビームが素子内に侵入する と電子-正孔対を生成するため、素子の電気的特性に変化を 与える。この現象はMOS(Metal Oxide Semiconductor)形の トランジスタに対して特に影響が大きく, しきい電圧の変化 となって現われる。この影響も電子ビームのエネルギーを下 げることによって大幅に軽減される。図5は、バー形MOSト ランジスタの電子ビーム照射に対するしきい電圧の変化量を 調べた結果である。加速電圧25kVでは10⁻⁸C/cm²の電子照射 で0.1Vのしきい電圧変化を生じるが、1kVでは 3×10^{-1} C/cm² の照射を許容する。電子ビーム テスタによる照射量は10-3~ 10^{-2} C/cm²なので、しきい電圧変化は10mV以下に抑えること ができる。

3.2 低加速電子ビームの効果

一般の走査形電子顕微鏡では25kVの電子ビームを用いてい る。これは電子ビームを細く絞るためには、加速電圧が高い ほうが有利なためである。本装置では、これを1kVに下げて いる。これは以下に述べる電子ビーム テスタが備えるべき条 件を満たすためである。

3.2.1 帯電現象の軽減

25kVの電子ビームをLSIに照射すると電子が絶縁物に帯電 し、電子ビーム照射に障害を与えるばかりでなく、電位の測 定に重大な支障を与える。これは電子照射量(入る量)が二次 電子放出量(出る量)よりも大きいために起こる現象である。 低加速電圧では二次電子放出量が増すので, このバランスが とれるようになる。

この効果を確認するためにSi基板上に堆積させたPSG(リ ンガラス:厚さ0.6µm)表面の電子照射による電位変化を調 べた。図4に測定結果を示す。Si基板は接地電位とした。加 速電圧を1kV, 1.5kV, 3kVと変化させ, 照射直後を零電位 とし経過時間と電位の変化をプロットした。3kVで30秒, 1.5 kVでも5分後に帯電による負電位の急激な上昇が起こってい る。ところが、1kVでは急激な帯電は生じていない。わずか

10 25kV--0 0- 20k S 10^{0}

3.3 高速多数回位相走査法の効果

測定対象となる配線は絶縁膜で覆われていることが多い。 例えば、LSI全面に保護膜が施されている場合、あるいは多 層配線LSIの下層配線の電位波形を測定しようという場合で ある。絶縁膜の表面に,絶縁膜下の配線の電位変化に対応し て電荷が誘起され、電位が生じる。しかし電子ビームを照射 すると、この電荷が中和されて電位が減衰してしまう。1回 の位相走査を40秒前後で行なうような従来の位相走査法では, この減衰効果のため電位波形が微分した形として観察される。 位相走査を速くしていくと、この微分波形はしだいに改善さ れて観察されるようになる。この現象は、保護膜がコンデン サの作用をしていることで説明できる。すなわち,保護膜上 からの測定は、コンデンサを通して電位測定をすることに等

492 日立評論 VOL. 65 No. 7(1983-7)

価である。そこで、本装置では高速多数回位相走査を採用し て,あたかも交流で測定するようにしてコンデンサの影響を 小さくした。更に電子ビームを配線に沿って矩形状に走査し, 照射面積を広くした。これはコンデンサ容量を大きくする効 果となり、電位の減衰を更に小さくすることができた。

図6にこれらの効果を実験例で示した。1µmの保護膜を被 覆した8μmのAl配線に矩形波電位を与え、これを測定した。 同図(a)は毎秒12回の位相走査と点照射の, 同図(b)は毎秒100 回の位相走査と点照射の測定である。同図(c)は毎秒100回の 位相走査と2µm×20µmの面照射を併用した測定である。ま た同図(d)は保護膜を被覆していない端子部分を測定した波形 である。(a), (b)では入力の微分波形が示されているが, (c)で は入力波形が再現されている。

応用例 4

4.1 64kビットスタティック RAM素子の観測

このメモリ素子の測定には最終工程の保護膜をしていない 素子を用いた。クロック入力が素子内をどのように伝搬して いくかを測定した。図7に測定箇所とそこに対応した測定電 位波形を示した。零電位の確認は、電源入力、あるいはクロ ック入力を遮断することで確認した。入力波形①から出力波 形⑥まで伝搬信号に遅れを生じていく様子や振幅が小さくな っていく様子をはっきりと見ることができる。金属針による 方法では、64kビットのような微細な配線を、しかも破壊す ることなく、素子内の波形を得ることはほとんど不可能であ った。図8は図7内に示したバッファ アンプ出力③,③の出 力端子部の動作状態像(ストロボ像)で、20nsから5nsごとに 撮影した写真である。20nsでは端子③は明るい(零電位)が、 25nsでは中間の明るさになり、30nsでは暗く(+5V)になっ ている。端子③は③とは反位相の出力で暗から明に変わって いる。このような、像による判断も電子ビーム テスタのもつ

絶縁膜被覆を通した電位測定 図 6 絶縁膜(| µm)上からの電位測 定は位相走査を速く〔(a)→(b)〕かつ照射面積を広く〔(b)→(c)〕することで絶縁 膜の影響がほとんどみえなくなる。(d)は絶縁膜のない箇所の測定で(c)とよく-致している。

36

ィック RAMメモリ素 子内の信号伝搬の観測 入力クロックからし だいに信号伝搬に遅れが生 じていく様子や, 電位波形 の変化を一望することがで

C (30ns)

特徴である。

4.2 64kビットダイナミック RAM 素子の観測

A (20ns)

この素子は保護膜(0.8µm)をかぶっているもので、3.3節で 述べた高速多数回位相走査法(100回/秒)と面照射の組合せで 測定した。照射面積は約20µm²以上になるようにした。積算回 数は8,192回(測定時間80秒)である。ここでは、配線寸法が微 細でかつ動作信号が微弱であるため, 金属針で直接触れるこ とのできないメモリ アレー部の信号波形を測定した。測定の 信頼性を確認するため、素子内にビット線観測用の観測MOS トランジスタを組み込んだ素子を準備し、電子ビームでは ビット線を、金属針ではMOSトランジスタの出力を測定し た。図9(a)は電子ビームによる、同図(b)は金属針による測定 である。上段はワード線信号で、この信号でビット線にデー タが出力される。下段がビット線の出力信号である。両測定 波形はよく一致している。メモリ セルの微小な読出し信号 電圧(100~150mV)も問題なく観測できており、電子ビーム テスタが従来非常に困難であったメモリ セルアレー内部の動 作解析にも有用であることを示している。

4.3 高速バイポーラ メモリ素子への応用

バイポーラ メモリ,特に超高速のECL-RAM (Emitter Coupled Logic Random Access Memory)は大形計算機のコ ントロール及びバッファ ストレージに用いられ,処理性能向 上に寄与している。既に現用の4kビット素子のアクセス時間 は5nsまで高速化されている。こうした超高速アクセスの素 子設計には、LSIの内部動作信号を正確に測定し、これを設

図8 64kビットスタテ

ィック RAMメモリの像

ァ アンプ出力③, ③が10ns

の間に反転動作している様子

がみられる。A→B→Cと時間

(位相)を変えると③,③の明

暗が反転する。明るいのは零

電位, 暗いのが5Vに相当

バッフ

37

による解析例

する。

計にフィードバックすることが必要である。しかし、金属探 針を用いた従来法では, 針の浮遊容量のため正確に測定でき なかった。

図10(a)は入力バッファ回路の出力信号(OR出力:A, NOR 出力:B)の計算機による回路解析結果である。同図(b)は, 実際に入力バッファ回路の出力線を電子ビームで測定した結 果である。回路解析結果とよく一致していることが分かる。 また同図(c)は、同一箇所を金属針で測定した結果である。回 路解析及び電子ビーム法で2.2nsと測定された遅延時間が7.5 nsに観測されている。これが針の浮遊容量の影響で、放電時 間が測定の限界となっている。電子ビームではこの浮遊容量

用)によって装置の構成が大きく異なる。良品,不良品との 選別であれば画像で検査することで時間短縮が図られる。特 殊な例としてはH.C.Pfeiffer¹³⁾の行なっているパッケージン グモジュールの断線検査がある。一方,開発用であれば,多 少時間がかかっても精度の良い電圧波形を丹念に測定できる ものが望まれるであろう。今後は,電子ビームの特徴を生か し,しかも用途に合わせた装置の開発が進んでいくものと予 想される。

6 結 言

低加速電子ビームを用いたLSIテスタを開発した。1kVの 電子ビームを用いたので、電子ビーム テスタの問題とされた 絶縁物への電子ビームの帯電と素子の損傷を実用的に問題の ない程度に減少させることに成功した。電子源に電界放射を 採用し、1kVで0.1µmの微細な電子ビームを作り、0.1Vの 電圧分解能、1nsの時間分解能を実現した。これに高速で多数 回位相を走査する方式を併用し、保護膜下の電位波形をも測定 可能にした。この開発で、低加速電圧の電子ビーム テスタが超 LSIの評価・解析装置として有効であることが確認できた。

今後は、本装置の応用の拡大を図りながら、精度の向上、 超高速素子に対応するための時間分解能の向上を行ない、本 格的なLSIテスタへ発展させていきたい。

本研究の遂行に当たり,有益な御助言をいただいた大阪大 学工学部電子ビーム研究施設教授,裏工学博士,及び助教授, 藤岡工学博士に対して深く感謝する。

200mV/div. 1ns/div.

図10 高速バイポーラ メモリの入力バッファ出力の測定 計算機 による回路解析波形(a)と電子ビームによる実測例(b)の比較を示す。(c)は金属針 による測定であるが、針の浮遊容量のため遅延時間が大きく測定されている。

が非常に小さい(約10⁻⁵pF)ため、この影響なしに測定される。 このように電子ビーム法では高速動作信号が高精度に観測で きることから、バイポーラRAMの設計・評価に大いに貢献す るものと期待される。

5 課題と今後の展開

電子ビームは、(1)静電容量をもたないこと、(2)微細な針 にできること、(3)動作状態の画像が得られること、(4)非破 壊であること、などの特徴をもつ。この特徴が超LSIの診断 機として有効であることは既に述べた。しかし、この特徴を 生かした本格的なLSIテスタとするためには、なお検討すべ き課題も多い。

その第一は電位測定精度向上である。電位の相対的な変化 ないしは波形だけを対象とする場合には特に問題はないが、 絶対値の測定には今後解決しなければならない問題を含んで いる。孤立した配線であれば5~10%の精度で測定可能であ るが、近接した配線に大きな電位変化が存在する場合には、

参考文献

- G.S. Plow, et al.: Stroboscopic Scanning Electron Microscopy, J. Sci. Inst. (J. Phys. E), Ser. 2, 1, 595~600 (1968)
- 2) 裏,外:ストロボ走査電子顕微鏡と半導体素子への応用,1, 大阪大学工学部電子ビーム研究施設(昭54-11)
- 3) 裏,外:ストロボ走査電子顕微鏡と半導体素子への応用,2, 大阪大学工学部電子ビーム研究施設(昭55-11)
- 4) E.Menzel, et al.: Electron Beam Test Techniques for Integrated Circuits, Scanning Electron Microscopy/1981, 1 (1981)
- 5) H. Fujioka, et al. : Function Testing of Bipolar IC's and LSI's with the Stroboscope Scanning Electron Microscope, IEEE, J. Solid-State Circuits, SC-15, No. 2, 177~183 (April, 1980)
- 6) E.Wolfgang, et al. : Electron-Beam Testing of VLSI Circuits, IEEE, J. Solid-State Circuits, SC-14, No.2, 471~481, (April 1979)
- 7) 古川,外:LSIの診断に威力を発揮する電子ビームプロービング,日経エレクトロニクス,No. 286, 172~201 (昭57-3)
- 8) 戸所,外:低加速ストロボSEM,荷電粒子ビームの工業への 応用第132委員会,第79回研究会資料,23~32(昭56-11)
- 9) 戸所,外:絶縁物の電位測定に与える影響,荷電粒子ビームの工業への応用第132委員会,第82回研究会資料,20~25 (昭57-10)
- 10) G.V.Lukanoff, et al.: Electron-Beam Testing of VLSI Dynamic RAMs, IEEE Test Conference, 68~76 (1981)
- 11) 斉藤, 外:日立HFS-2形電界放射形超高分解能走查顕微鏡,

この影響を受けて相及が低下する。平表直では、ク	リットの
電位を負の領域とし,近接電位の影響を受けやすい(氏エネル
ギーの二次電子を検出しないようにし、この影響の(氏減を図
っているが、それでも現在20~30%の誤差は避けられ	れない。
第二はテスト装置としての性格づけである。テス	トの対象
物(LSI, パッケージング モジュール), 用途(開発)	刊, 検査

日立評論, 56, 3, 263~268(昭49-3) 12) 菰田, 外:透過型走査電子顕微鏡による原子像の観察, 日立 評論, 59, 5, 417~421(昭52-5)

 H.C. Pfeiffer, et al.: Contactless Electrical Testing of Large Area Specimens Using Electron Beams, J. Vac. Sci. Technol., 19(4), 1014~1018 (Nov./Dec. 1981)

 $\mathbf{38}$