U.D.C. 621.039.672.026

トカマク型プラズマ実験装置"JIPP T-IIU"の完成 Completion of ``JIPP T-IIU" TOKAMAK for Nuclear Fusion Research

名古屋大学プラズマ研究所第3次計画の準備研究の主装置であるトカマク型プラズマ実験装置 "JIPP T-IIU"を完成した。

本装置は、トカマクとステラレータの複合装置として活躍してきた"JIPP T-II" を、R計画の準備研究の一環としてトカマク専用に改造・増力したもので、真空容 器小半径を1.6倍に、プラズマ電流を約2倍にするなど、その能力を大幅に向上さ せた。

また, プラズマ中の不純物除去にその威力が期待されているポンプリミッタ装置 を国内では初めて完成した。

本論文では、これらの装置の設計・製作に関し紹介する。

石塚達郎^{*} Tatsurô Ishizuka 桝本 孝^{*} Takashi Masumoto

1 緒 言

準定常プラズマ実験装置"JIPP T-II"は、名古屋大学プ ラズマ研究所第2次計画の主装置として昭和51年に稼動を開 始した装置¹⁾で、核融合プラズマの基礎研究を多角的に行な うことをねらい、トカマクとしても、ステラレータとしても運 転できる複合磁場系のハイブリッドトーラスとして建設された。

画(Alternative Project)の2本立てで進行中であるが、"JIPP T-IIU"はR計画の準備研究のためのプラズマ実験装置として 位置づけられる。

R計画は,(1)核反応プラズマの物理の解明,(2)D(二重水素)-T(三重水素)反応に対処できる各種技術及び総合装置技術の確立を目的としている装置²⁾であり,昭和56年から精力的な設計作業が名古屋大学主導の下に実施されている³⁾。

この装置では,数々の研究成果が得られたが,複合装置で あるための空間的条件から,ポートの大きさ,数などについ ての制約があった。

このため,名古屋大学プラズマ研究所の第3次計画準備研究の主装置として,装置の改造・増力を行ない,昭和58年に, トカマク型プラズマ実験装置として運転を開始した。

改造の主眼はR計画(Reacting Plasma Project)の準備研究 であるので、プラズマ電流の増大及びポート数、ポート寸法 の増大のために、主として真空容器、変流器周りの改造・増 力を行なった。

2 改造の目的と背景

名古屋大学プラズマ研究所の第3次計画は,R計画とA計

R装置設計作業は、従来からのステンレス系装置としてス タートし、現在では、低誘導放射能材料であるアルミ合金を 主要材料とする装置としてまとめられている。日立製作所は 当初から、これらの設計作業に積極的に参加し、JIPP T-IIU 製作と併せて、R計画推進に努力している。図1にR装置2 次設計での本体概念図を示す。

"JIPP T-IIU"は、これらR計画装置設計作業と相補関 係にあり、それぞれの成果を踏まえながら研究が進められて いるが、主として、

(1) 高周波によるプラズマ電流立上げ・駆動の研究

(2) 高周波によるプラズマ加熱の研究

* 日立製作所日立工場

33

664 日立評論 VOL. 66 No. 9(1984-9)

表 本体主要パラメータ "JIPP T-IIU"本体の主要パラメータを示 す。プラズマ副半径,プラズマ電流,鉄心有効磁束とも改造前に比べて大幅に 増加している。

IJ	項目		JIPP T-II	JIPP T-IIU	
主	主 半 径		0.91m	0.91m	
副	半	径	0.17m	0.23m	
トロイダル磁場			3 Т	3 Т	
ヘリカル磁場		芯 相	l=2 , $m=4$	m=3, $n=1$	
		XX. 4977	トーラス全周	トーラス方向30度, 2箇所	
鉄心有効磁束		兹束	0.45V·S	0.8V·S	
プラズマ電流			I60kA	300kA	

(3) 大電力高周波加熱時のプラズマ-壁相互作用の研究

(4) プラズマ計測技術の研究 がその課題とされている。

3 装置の概要

これらの目的を達成するために、(1)真空容器断面の大型化、 (2) ポート数増加及びポート寸法の大型化, (3) 変流器磁束の増力 などを行ない、 プラズマ電流の増加、 高周波加熱用アンテナ 設置を可能にし、併せて、局所ヘリカルコイル設置による不 純物制御の研究も可能とした。

本体の主要パラメータを表1に、装置構成を図2に、外観 を図3に示す。

真空容器 4

図4に示すように、真空容器断面を大型化したことに伴い、 空間上の制約から真空容器には、(1) プラズマ制御用シェルと しての機能, (2) フィードバック型垂直磁場コイル支持体とし ての機能、(3)局所ヘリカルコイル支持体としての機能、など が必要となった。

このため、真空容器は図5に示すように二つの厚肉部と二 つのベローズ部を交互に配した構造とした。ベローズ部上に は局所ヘリカルコイルを設置する巻枠を配置して、厚肉部と 機械的に結合したため,真空容器としてはトロイダル方向に 剛な構造となり、フィードバック型垂直磁場コイルの設置が 可能となった。

No.	名 称	No.	名 称
	真空容器	6	水平磁場コイル
2	トロイダル磁場コイル	$\overline{7}$	鉄心
3	フィードバック型垂直磁場コイル	8	変流器一次主コイル
4	直流型垂直磁場コイル	9	変流器一次補助コイル
5	巻戻しコイル	10	バイアスコイル

図2 本体装置構成図 "JIPP T-IIU"本体装置の構成を示す縦断面図 である。変流器一次主コイルの配置変更,補助コイルの追加によって変流器機 能を増強した。

真空容器は、脱ガス処理のため電気ヒータによって150℃ にベーキングされるため熱膨脹するが、真空容器を剛な構造 としているので、この支持は半径方向には剛性の小さな8本 の支持脚を用いて行なった。

ICRFアンテナ,大型リミッタなどの搬入及び内部での作 業が可能なようにポートの寸法を大型化したことにより、真 空容器内の部品の取付・交換が容易になり実験のフレキシビ リティが飛躍的に向上した。また、ポート部の真空シールは、 従来から実績のある銀めっき金属〇リングを用いて行なって いるので、良好な真空性能が得られている。

図5に真空容器の単体組立状況を示す。

一方,真空容器の内部には、プラズマと壁の相互作用を調 べるために各種のリミッタが取り付けられる構造となってお り、タイル状のバンパリミッタや図6に示すカーボン製ポロ イダルリミッタが設置されている。

表2に真空容器の主要パラメータを示す。

図3 "JIPP T-IIU"の外観 "JIPP T-IIU"本体部の外観を示す。ト ロイダルコイルの間に,長方形の真空容器ポートフランジが見える。

(a) "JIPP T-II " (b) "JIPP T-IIU" 図4 真空容器壁とプラズマの位置関係 真空容器断面の大型化に 伴い、真空容器壁とプラズマの間に、高周波加熱用アンテナなどの設置が可能 となった。

34

図 5 真空容器の外観 "JIPP T-IIU"の真空容器外観を示す。ベローズが、2箇所に配置されており、トーラス外周側には大形の長方形ポートが設けられている。

表2 真空容器パラメータ アスペクト比2.9の太い真空容器である。 二つの厚肉部(板厚25mm)の設置により,真空容器自体にシェル機能をもたせている。

項	目	仕	様
断面形	》 状	丸	型
主 半	径	0.93	m
副半	径	0.32	m
材	質	SUS3	304
材	厚	25m	m
内 容	積	2 m	3
ポート	総数	30	個
真空シール	/方式	メタル中空	0リング
一周抵	抗	1mΩ(ベロ-	-ズ2個)
ベーキンク	「温度	150%	С

5 フィードバック型垂直磁場コイル

プラズマの制御性と電源容量の節約の点から,フィードバック型垂直磁場コイルは,トロイダル磁場コイルより内側に 設けられるが,空間的制約から専用支持体が設けられない。 このため,真空容器から支持する構造とした。

図 6 カーボン製ポロイダルリミッタ 稠密質黒鉛製の大型リミッタ を示す。プラズマを囲む形でトロイダル方向に2組み設けられている。

コイルに発生する電磁力を支持するためには,真空容器に 剛に取り付けることが望ましいが,真空容器のベーキング時 には,その熱変形に追随し熱応力を発生する。そこで,電磁 力による応力と熱応力と両方を勘案し,どちらの場合にもコ イル絶縁に過大なひずみが作用しないようにするため,コイ ルは適切なばね定数をもつ弾性支持体を介して真空容器から 支持する構造とした。

6 変流器

変流器は,鉄心,一次コイル及びバイアスコイルから構成 される。従来は,トーラス中心部の脚鉄の上下部に一次コイル を設けて,変流器磁束を発生させていたが,一次コイル設置位 置での鉄心の局所飽和現象により,有効磁束に限界があった。 改造目的を達成するために,有限要素法による磁界解析コ

図7 変流器解析結果の例(改造前) 一次コイル設置部で磁力線が密に なっていることが分る(プラズマ電流|34.8kA,一次コイル2|3.1kATの場合の解 析結果を示す)。 図8 変流器解析結果の例(改造後) 改造前に比べて赤道面での磁束が 増加していることが分かる(プラズマ電流300kA, 一次コイル380kATの場合の解 析結果を示す)。

35

666 日立評論 VOL. 66 No. 9(1984-9)

図9 ポンプリミッタ系統図 ベローズを伸縮させ、リミッタヘッドをゲートバルブの外側に移動させることにより、真空容器の真空を破らずにリミッタ ヘッドを交換できる。ポンプ類は、名古屋大学で取り付け使用される。

表3 ポンプリミッタ設計要目 リミッタヘッド近傍に設けられた排気

ードを用いて,鉄心の効果を考えて種々検討を行なった結果, 脚鉄の上下付根部にあった一次コイルを赤道面側に移設する とともに一次コイルを一組み増設することで、プラズマとの 結合性を向上させ変流器機能の増強を図った。

本改造により, 電源設備に手を加えずに有効変流器磁束が 0.45V·Sから0.8V·Sへと約1.8倍に増大し、プラズマ電流も 160kAから約2倍の300kAへ増加することができた。

改造前後での解析結果を図7,8に示す。

7 ポンプリミッタ

プラズマの不純物制御研究と第一壁との相互作用研究の2 点を主目的とし、ポンプリミッタが設けられた。ポンプリミ ッタを用いることにより,磁気ダイバータなしに不純物除去 ができれば,核融合炉の単純化が可能となり,経済性の向上に もつながるため、海外でも実験的研究が企画されている。我 が国ではまだその例がなく、本装置を用いた実験の成果が期 待される。

具体的設計に当たっては、ポンプリミッタ排気機構及びリ ミッタへの熱負荷と排気効率の関係を明らかにするため,

(1) 各種排気装置の設置が可能なこと。

(2) リミッタヘッドの両側にそれぞれ排気口を設け、真空を 破らずにその幅が各々独立して変えられること。

(3) ゲートバルブを閉じることにより、トーラス本体の真空 を破らずにリミッタヘッドを交換できること。

などを考慮した。

また、リミッタヘッド材として、コンバージョン法4)によ り表層を約0.8mmSiC化したカーボンを用いる点が特徴である。 これは、従来から行なわれているTiCコーティング膜では困

口の幅は,真空を破らずに変えることが可能である。

項目	仕	様
排 気 速 度	約1,000 <i>l</i> /s(1	H2に対して)
排気ダクト径	φ110	0mm
リミッタヘッド可動範囲	トーラス中心から1,080mm~2,050mm	
リミッタヘッド径	φ160	Omm
リミッタヘッド材質	SUS304及びSi(C層付カーボン
排 気 口 寸 法	幅40mm×7	8mm× 2 個
排気口幅可変範囲	0~4	0mm

言 8 結

トカマク型プラズマ実験装置"JIPP T-IIU"は、昭和58年 予定どおり建設を完了しその後順調に稼動しており、名古屋 大学プラズマ研究所を中心とする研究陣により, 数々の注目 すべき成果が得られている。

また,成果の一部は,既にR計画などの設計に反映されてお り、今後もますます、その存在意義を高めていくと期待される。

終わりに、本装置の設計・製作に当たり貴重な御助言と御 指導をいただいた名古屋大学プラズマ研究所教授・松浦清剛 工学博士, 藤田順治理学博士, 浜田泰司理学博士, 同所助教 授棚橋秀俉工学博士, 東井和夫工学博士, 北川史郎工学博士, 松岡啓介工学博士, ほか関係各位に対し, 厚く謝意を表わす 次第である。

参考文献

難であった強固な層をもっている点,及び炭素ブロック状態
で成形加工が可能なことから, SiC焼結体にはなかった好加
工性をもっている点などで有利である。
このほか、リミッタヘッド材の交換が容易な特徴を利用し、
良好な第一壁材が開発されることも期待される。
図9にポンプリミッタ系統図を,表3にポンプリミッタの
設計要目を示す。

- 1) 伊藤, 外: ステラレータ・トカマク型実験装置"JIPP T-II" の完成,日立評論, 62, 5, 325~330(昭55-5)
- 2) 名古屋大学プラズマ研究所:核反応プラズマ実験計画とその 準備研究、プラズマ研便り、1、3~12(昭59-1)
- 3) 名古屋大学プラズマ研究所:核融合反応プラズマ実験装置技 術報告〔I~Ⅵ〕
- 4) 愛場,外:コンバージョン形炭化ケイ素~カーボン複合材, 日立評論, 63, 4, 249~252(昭56-4)

36