U.D.C. 621.039.672.026

逆転磁場ピンチトーラス装置"REPUTE-I"の完成 Completion of Reversed Field Pinch Torus ``REPUTE-I"

東京大学では、逆転磁場ピンチトーラス装置"REPUTE-I"を建設した。 RFPは、その将来性を注目され、最近急激に研究が活発化している核融合の概念 であり、REPUTE-Iは、主半径820mmの国内最大のRFP実験装置である。

REPUTE-Iは、本体、電源、制御及び補機から構成される。本体は、磁場のしみ 込み性に特に注意し、コンパクトに設計した。電源は、コンデンサとリアクトルの 組み合わせで、各種電流波形を得る方式とした。制御では、ノイズ低減のため、制 御室からの制御線を光ファイバとした。ガス供給装置はピエゾバルブを用い、予備 電離装置は熱陰極方式の電子銃とした。

宮本健郎*	Kenrô Miyamoto			
井上信幸**	Nobuyuki Inoue			
伊藤 裕***	Yutaka Itô			
渡辺 隆***	Takashi Watanabe			
石垣幸雄***	Yukio Ishigaki			
椎名幸則****	Yukinori Shiina			

1 緒 言

RFP(逆転磁場ピンチ)は、現在最も研究の進んでいるトカ マク型核融合装置と比較して、(1)コンパクトな核融合炉の実現、 (2)ジュール加熱だけで臨界条件達成の可能性があり、最近 研究が急速に活発化してきている^{1)~3)}。東京大学でもRFPの研 究を進めることとなり、国内最大のRFP実験装置"REPUTE-I"(Reversed Field Pinch-University of Tokyo Experiment-No.1)を建設した⁴⁾。

しても磁場が不均一とならぬように、各18個設けられるポー トセクション及びベローズで、トロイダル磁場に対するスキ ンタイムを同一とするように設計した。

また, RFPの場合は真空容器が薄肉であるため, プラズマの不安定性により損傷する可能性が高い。REPUTE-Iでは, この点を考慮し, 真空容器の保護のため, 真空容器内面の各ポートセクションに多数(7個×18セクション)のリミッタを配置した。

REPUTE-Iの装置の特徴は,

(1) 大プラズマ電流を得るために大型変流器鉄心をもっていること

(2) シェルは抵抗性シェルとし、プラズマの平衡は平衡磁場のフィードバック制御により得ること

(3) 準定常放電を得るため、コイル電源はPEN(Pulse Forming Network)付コンデンサ電源とすること

(4) ステラレータ磁場の発生,回転変換角の時間制御を目的として、ヘリカルコイルを設けること

などであり,装置の主要パラメータを表1に,また,世界の RFP装置をまとめて図1に示す。同図からPEPUTE-Iは世 界的規模の装置であり,コンパクトでありながら高いプラズ マ電流を目指していることが分かる。

日立製作所は、本体、電源、制御、補機を含むREPUTE-I の全システムを製作した。本論文では、これらに含まれる新 技術、新構造などについて述べる。

2本体

2.1 本体概要

完成した本体の外観を図2に、本体の断面図を図3に示す。 各機器は変流器鉄心の周りにヘリカルコイルを除いて軸対称 に設置され、プラズマ側から真空容器、シェル、トロイダル コイル、ヘリカルコイル、ポロイダルコイルの順に配置され る。本体構成機器の主要諸元を表2に示す。各機器の特徴に ついて以下に述べる。

2.2 真空容器

表 | REPUTE-I装置パラメータ REPUTE-I装置の主要なパラメー タを示す。

		項		目			主要パラメータ
プ	ラ	ズ	マ	大	半	径	820mm
プ	ラ	ズ	~	/]\	半	径	200mm
		3	最	5	大	値	400kA
プラズマ電流		立	F	り時	間	0.5, I, 2, 4ms	
		フラ	マト	トップ	時間	40 ms	
トロイダル磁場		15	イ	ア	ス	0.25T	
		逆	車	5	後	-0.I0T	
		逆	車云	時	間	0.5, 1, 2, 4ms	

完成した真空容器の外観を図4に示す。真空容器は、磁場のしみ込み特性に特に留意して設計した。すなわち、材質は比抵抗が高く、高強度であるインコネル-625を使用して、板厚を極力薄くした。また、トロイダル磁場の急激な変化に対

プラズマ大半径 R_p (m)

37

図 I 世界のRFP装置 円の中心座標は(*R_p*, *I_p*)であり,円の半径は横軸 と同じ縮尺で*a_p*を示すものである。REPUTE-Iは世界的規模の装置であり,コ ンパクトでありながら大プラズマ電流を目指している。

* 東京大学理学部 理学博士 ** 東京大学工学部 理学博士 *** 日立製作所日立工場 **** 日立製作所核融合推進本部

668 日立評論 VOL.66 No.9(1984-9)

図2 本体外観 完成した本体の外観を示す。

表2 本体構成機器主要諸元 各機器は、不整磁場を極小にするように 設計した。

機器	項	目	諸	元	
	材質		インコネル625		
	ポートセクショ	ン板厚	2.4mm		
	磁場スキンタイム	トロイダル磁場	0.3ms		
真空容器		ポロイダル磁場	0.2ms		
		垂直磁場	0.1ms		
	ポート員数		54		
	リミッタ員数		123		
シェル	垂直磁場スキン	タイム	l ms		
	材質		SUS316		
	材厚		5 mm		
トロイダルコイル	起磁力		I,025kAT		
	員数		54		
ヘリカルコイル	結線		l=2, m=9ステラレータ型		
	起 磁 力		\pm 40kAT		
ポロイダルコイル	垂直磁場コイル中心磁場		0.18T		
	水平磁場コイル中心磁場		±0.002T		
	変流器コイル起磁力		500kAT		
変 流 器	バイアスコイル起磁力		5 kAT		
	鉄心磁束変化量	t	I.6V·s		

図3 本体断面図 本体は鉄心の周りにヘリカルコイルを除いて軸対称に 配置される。

2.3 シェル

シェルは時定数1msとするように,材質をSUS316とし, 板厚を5mmとした。電気的絶縁はトロイダル方向に2箇所, ポロイダル方向に1箇所設けた。トロイダル方向分割部は少 ないスペースで電気的絶縁を行ない,かつ強度を確保するた め,はめ合い方式とした。

2.4 トロイダルコイル

のサポート方式について述べる。これらの機器はプラズマに 近接して配置する必要があるため、各機器ごとに単独のサ ポートを設けることはスペース上好ましくない。このため、 上記機器中最も剛性の高いシェルに他の機器をサポートし、 架台からはシェルだけをサポートする方式とした。トロイダ ルコイルの転倒力は、シェル上にボルトで固定したFRP(ガラ ス繊維強化プラスチック)を介してシェルに伝達する構造と した。

2.6 変流器

変流器コイルは,鉄心からの漏れ磁場を極小とするため, 中央水平面にもコイルを配置させるような幅の狭い円筒状と した。また,鉄心はトロイダル磁場逆転時の誘起電圧により 鉄心内磁力線方向に渦電流が流れるのを防ぐためバット接合 とし,接合面に絶縁シートを挾み1ターン絶縁を行なう構造 とした。

図4 真空容器の外観 全周に多数のポートを配している。

 $\mathbf{38}$

3 電 源

電源装置を表3に示す。各電源は、それぞれ目的の異なる 複数のコンデンサ電源から成り、リアクトルとコンデンサの 縦続接続によるPFNを基本に構成した(図5参照)。各電源の 通電パターンを図6に示す。

トロイダルコイル電源は、図5(a)の左半分のバンク(バイア スバンク)で5msの正のフラットトップを作り出し、次に右 半分の電解コンデンサバンク(メインバンク)で電流極性を急 速反転させ、その後40msの負のフラットトップを形成するた めのものである。デカップリングコイルは、電流極性反転時 以降メインバンクからバイアスバンクへ電流が流れ込むのを 抑制することができる。

垂直磁場コイル電源は、プラズマの水平方向の位置を維持 させるための電源である。したがって、本電源には電力用 トランジスタで構成したベース電流直接制御方式によるフィ ードバック回路を付加し、プラズマ電流の変化にほぼ連続的 に追随できる方式とした。

同様に,水平磁場コイル電源は,プラズマの垂直方向変位 をフィードバック制御するための電源で,大容量電解コンデ ンサを水平磁場コイルに対して逆並列に接続し,プラズマの 変位に追随して,電力用トランジスタをチョッパ動作させる 方式とした。

表3 電源装置の主要諸元 トロイダルコイル電源, 垂直磁場コイル電 源及び変流器電源はPFN付である。

No.	電源名称	最大電圧	最大電流(kA)	容量(kJ)	備考
1	トロイダルコイル電源	l6.8kV	19	742	_
2	ヘリカルコイル電源	2.0kV	20	21	
3	垂直磁場コイル電源	10.0kV	7.2	458	フィードバック回路付
4	水平磁場コイル電源	50∨	0.9	19	同上
5	変流器電源	20kV	41.7	1,326	
6	バイアス電源	63V	1.25	_	

図(d)に示すようにPFN回路を切り換えて使用できる構成とし、 更に中間タップ付のステップダウントランスを使用している。

4 制 御

制御装置のシステム構成を図7に示す。すなわち主制御盤 は、マイクロコンピュータとのGP-IBインタフェースによっ てシステム全体を統括し、副制御盤,遅延パルサへデータを 伝送する。副制御盤は電源の制御,充電電圧の表示などを行 なう。遅延パルサは電源、ガス供給装置などの動作タイミン グを制御するトリガパルスを出力する。制御室,電源室間の これらの信号は、すべて光ファイバを介して伝送されており、 この種の装置としては新しい試みである。

変流器電源は、プラズマ電流を発生、維持させるための電 源である。ただし、プラズマ電流の立上げ時定数を調整可能 なようにし、かつ異なるプラズマ抵抗値に整合するよう、同

以上のデータ類は、制御室内のプリンタへ出力される外、 放電ごとにフロッピーディスクへ磁気的に記録される。

39

670 日立評論 VOL.66 No.9(1984-9)

図9 予備電離装置ブロック図 図中に試験により得られた,加速電 圧-放射電流の特性を,フィラメント電流を,パラメータにして示す。

5 補 機

補機としては真空排気装置,ガス供給装置及び予備電離装置を設けている。

真空排気装置は,排気速度1,500*l*/sのターボ分子ポンプを 主ポンプとし,真空容器ポート部で470*l*/sの有効排気速度を もつ。

ガス供給装置は、最大流量は500Torr・l/sと大きく、また、

流の逆転時間は,4種類の値が設定できる。

図7 制御装置システム構成 制御室と電源室の間のケーブルは、ノイ ズ対策のため光ファイバとしている。

任意の波形で供給できるシステムとした。系統図を図8に示 す。ピエゾバルブと高速電磁弁を組み合わせたシステムであ り、ピエゾバルブだけで100Torr・l/sのガス流量が供給できる。

予備電離装置のブロック図を図9に示す。予備電離装置は, 直径1.5mmのW線を用いた熱陰極型の電子銃であり,1kV, 1Aの電子ビームを放射する。W線を約2,300℃に加熱するた めに流す電流は120Aと大電流であり,他の磁場により電磁力 が印加されるのを防ぐため,磁場印加前に加熱電流を切り, 予熱により電子を放射する方式とした。また実験の自由度を 増すため,電源側では接地せず,アノード又はカソードの任 意の一方を接地できる方式とした。

6 結 言

REPUTE-Iは、国内最大のRFP装置であり、日立製作所の新製品である。このため、本体、電源装置、制御装置及び 補機類を含め新方式、新構造の部分が少なくなく、優れたア イディアを数多く採り入れ、入念な検討を重ねた結果、所期 の性能をもつ装置を完成することができた。

今後、本装置によりRFP装置の有益な成果が得られ、その 研究がますます活発になることが期待される。

終わりに,本装置の設計製作に当たり,御指導,御協力を いただいた関係各位に対し深く感謝の意を表わす次第である。

参考文献

1) 逆磁場ピンチ(RFP)研究会報告:報告会全体を引用したもの で特定の論文はない。

核融合研究, 48, 別冊その1(1982年9月)

ガスボンベ

40

図 8 ガス供給装置ブロック図 ピエゾバルブ,高速電磁弁合計で500 Torr・l/sのガス量を供給できる。

- 注:略語説明 ④(真空排気系へ) PV(ピエゾバルブ) SV(高速電磁弁) GR(ガスリザーバ)
- 2) 長谷川: 無為自然の核融合装置,日本物理学会誌,39,19~
 23(昭和59年1月)
- K. Ogawa, et al. : Proc. 9th Inter. Conf. Plasma Physics and Controlled Nuclear Fusion Res., Baltimore, USA, 1982, 575~584
- 4) 井上,外:東京大学逆転磁場ピンチ計画,REPUTE-I,核 融合研究,50,(1983年10月)