# 大容量イオンビームミキシング装置の開発

## **Development of a Large Current Ion Beam Mixing Apparatus**

新材料の研究開発が進むなかで、金属表面改質技術としてイオン注入と蒸着を併 用するイオンビームミキシングが注目されている。今回、核融合用イオン源技術を 応用し、連続定格の大容量、高効率イオン源を開発し、これを用いた大容量イオン ビームミキシング装置を開発した。本装置は更に、イオン源放電時の高速遮断、高 速再立上げが可能で高信頼性化を図っているとともに、パルス運転、自動運転、蒸 着装置との同期運転が可能となっている。また、イオン源の高効率化に成功し、電 源、冷却装置を小形化し、大容量にもかかわらずコンパクトな装置となっている。 また、イオンビームミキシング法によりAl、Feなどに代表される金属上に、低温で 密着性の良いTiN膜を生成し、評価を行なった。

| 佐藤   | 守*    | Mamoru Satô    |
|------|-------|----------------|
| 田中   | 滋**   | Shigeru Tanaka |
| 橋本   | 勲**   | Isao Hashimoto |
| 瀬戸山英 | [嗣**  | Eiji Setoyama  |
| 下條哲  | 男***  | Tetsuo Gejô    |
| 佐藤   | 中**** | Tadashi Satô   |

#### 1 緒 言

現在,新材料の研究開発が進められているなかで,金属に対するさまざまな表面改質技術が開発,実用化されている。

従来,半導体用として開発されたイオン注入技術を応用し, 母材の性質とは無関係な性質をもった表面を作る技術が世界 的に脚光を浴び研究開発されており,一部実用段階に入って

#### 2 ダイナミックミキシングとその特長

イオン注入とは,真空中で注入したい粒子をイオン化し, 加速して固体基板に注入する方法[図1(a)参照]である。一方, ダイナミックミキシングは固体基板表面に蒸着膜を生成しな がらイオン注入を行ない,母材に打ち込まれたイオン種原子, 蒸着金属及び母材とで境界面のない混合層を生成し,密着性

いる。

更に,最近,このイオン注入に金属蒸着を併用したダイナ ミックミキシングと言われる方法が,日本を中心に開発され つつある。この方法は低温処理が可能で,非熱平衡プロセス で合金を作れるなどの特長をもっている。この技術により部 分的ではあるが,CBN(立方晶窒化ホウ素膜)作製に成功して いる<sup>1)</sup>。

日立製作所では、早くからこの技術に注目し、装置の開発 を進めてきた<sup>2)~5)</sup>。従来の半導体用イオン注入機は小容量であ り、半導体の100~1,000倍の注入量を必要とする金属表面改 質用の実用装置としては問題がある。今回、核融合装置プラ ズマ加熱用に開発したイオン源技術により、大容量の連続定 格イオン源を開発し、それを用いた実用レベルのイオンビー ムミキシング装置を開発した。

本稿では、本装置の構造、特長、生成膜の性状、応用分野 などについて述べる。



の良い膜を生成する方法〔図1(b)参照〕である。そのプロセス のモデルを図2に示す。改質層は前者が0.1µm前後なのに対 し,後者は任意の膜厚に生成できる。

ダイナミックミキシングの主な特長は以下のとおりである。 (1) 母材と表面処理層の間に混合層が生成され,従来の成膜 法に見られる層間の境界がなく,密着性が格段に良い膜の生 成が可能である。

(2) 低温処理のため、従来処理のような母材の熱変形がなく、 最終形状での処理、また繰返し処理が可能である。

(3) 表面処理と膜生成が非熱平衡プロセスであり、蒸着とイ



59

図 | ダイナミックミキシングとイオン注入の比較 ダイナミック 図 2 ダイナミックミキシングモデル ダイナミックミキシングは、 ミキシングは、イオン注入と蒸着を同時に行なうため、任意の厚さの改質膜を 蒸着とイオン打込みを同時に行ない、任意の膜厚の混合層を形成できる。 生成できる。

\* 通商産業省工業技術院大阪工業技術試験所 \*\* 日立製作所国分工場 \*\*\* 日立製作所機電事業本部 工学博士 \*\*\*\* 日立製作所日立研究所

822 日立評論 VOL. 68 No. 10(1986-10)





図4 イオンビームミキシング装置の外観 本装置は40kV, 0.2A (連続)のイオン源, IOkW電子ビーム蒸着装置を備え, 従来に比べ非常にコンパ クトな外観となっている。

表 | イオンビームミキシング装置の主な仕様 イオンビームミキ シング装置の主な仕様を示す。

注:略語説明 GTO(ゲートターンオフ), SCR(サイリスタ)

図3 装置構成 本装置は、イオン源、試料ホルダ、EBガン蒸着装置、 膜厚計,真空排気装置,電源及び制御系から構成される。

オン注入の混合比が選択可能で, 生成膜の組成制御が可能で あり,再現性にも優れている。

(4) 注入イオンは数億度相当のエネルギーをもっているため、 ダイヤモンドライクの新物質の生成にも応用可能である。

3 イオンビームミキシング装置

#### 3.1 装置全体構成

今回開発した装置の構成を図3に、外観を図4に示す。

イオン源からの出力ビームを,水冷回転式ホルダに取り付 けられた試料に照射し、イオン注入を行なうとともに、電子 ビーム蒸着装置から各種材料を蒸発させ試料に蒸着させる。

イオンビーム電流はファラデーカップで, 蒸着速度は膜厚 モニタで測定し,両者の割合を制御しながらの膜生成が可能 である。

主な仕様を表1に示す。

#### 3.2 イオン源

60

イオン源は核融合装置で開発したバケット形イオン源を採 用した。その基本構成を図5に示す。フィラメント~アノー ド間の放電により生じたプラズマを永久磁石によるカスプ磁 場で閉じ込めることにより、大面積での均一プラズマができ る。これにより、従来の半導体用イオン注入機に用いられて いたフリーマン形イオン源のビーム径数センチメートル角で 10mA前後の出力に比べ、数十センチメートル径でアンペアク

| 項目         | 仕様                          |
|------------|-----------------------------|
| イオンビーム径    | ø150mm                      |
| イオンビーム出力   | 40kV, 0.2A(連続), 0.4A(パルス)   |
| イオンビーム入射方向 | 45° • 90°                   |
| 電源制御       | 40kV直流半導体スイッチ               |
| 電子ビーム蒸着装置  | 10kW 4 ハース切換式               |
| 試料ホルダ      | 水冷回転機構付き<br>熱電対による試料温度モニタ付き |
| 電源         | 自動運転・手動運転切換式                |
| 排 気 装 置    | 自動運転・手動運転切換式                |

(2) 磁場解析による磁石配置の最適化によりプラズマ発生効 率を高め, 高効率イオン源とした。

(3) 絶縁支持部材へのスパッタ物付着及びイオン源へのごみ の落下を防止する構造とした。

(4) アーク室フランジ部にヒンジ構造を採用し、フィラメン ト交換など保守作業性を向上した。

#### 3.3 真空容器内構成

真空容器内構成を図3に示す。本装置は試料ホルダ, 電子 ビーム蒸着装置,ファラデーカップ,膜厚モニタから成って いる。

(1) 試料ホルダは、直径150mmまでの試料を取り付けられ、 水冷式で速度可変回転機構を備え,また熱電対による回転中 の試料の直接測温が可能である。

ラスのイオン源を開発済みであり、多量のイオン注入を必要 とする金属表面改質には最適のイオン源と言える。 今回のイオン源は,

(1) 電極構造はビーム発散角,絶縁性を考慮してコンピュー タによる電界解析を行ない,決定した新方式の構造を採用し, 一段と性能・信頼性を向上した。

(2) 電子ビーム蒸着装置は、四つのハースを備え、更にシャ ッタとイオン源電源を連動するパルス運転が可能となってい 3. 3.4 排気装置

本装置はターボ分子ポンプを備え、クリーンな真空と10<sup>-5</sup>Pa の到達真空度が可能で,運転時の操作性を考え,手動運転の ほか自動シーケンス運転が可能となっている。

#### 3.5 電源·制御

(1) 世界初の40kV直流GTO(ゲートターンオフ)採用のマスタ スレーブ形半導体スイッチをもち, イオン源内放電時の高速 遮断・高速再立上げが可能であり, 信頼性はもちろん時間的, エネルギー的効率の向上を図っている。外観を図6に示す。 (2) 自動シーケンス運転・手動運転が可能である。

イオンビーム出力時間,休止時間,全出力時間を任意に設 定でき、これによりイオン注入量の制御が可能で、任意のパ ルス処理プログラム設定により種々の処理が可能である。 各電源は低圧側制御を行ない, 信頼性, 操作性を向上し (3)た。

(4) 装置は、小形化及び保守性の向上を図った。



#### 4 生成膜の性状

図7はチタンと窒素を用いたダイナミックミキシングによ りAl-11%Si合金上に生成した約1.0µm厚さの膜のオージェ 分析結果を示すものである。母材表面にTiN(窒化チタン)層 が生成されており、また母材との境界でのAl-Ti-N-Siの混合 層の存在が分かる。

図8に摩擦係数の測定結果を示す。TiNコーティング材は 比較材の硬質Crめっきに比べ高荷重側で摩擦係数が低くなっ ている。次に、類似の試験法で摩耗試験を行なった。TiN材 はほとんど摩耗が見られず耐摩耗性が大きく改善できること が分かった。

図9に180度曲げ試験の評価結果を示す。これより、ダイナ ミックミキシングの生成膜はイオンプレーティングのものに 比べ密着性が良いことが分かる。



図5 バケット形イオン源の基本構成 バケット形イオン源の断面構 造を示す。

AI表面上のミキシングTIN膜のオージェ分析 表面 から TiN 図 7 膜が形成されており、また基材表面にミキシング層ができていることが分かる。





40kV直流半導体スイッチの外観 専用プリント基板により, 区 6 高圧にもかかわらず非常にコンパクトな外観となっている。

図8 TiNコーティング材の摩擦係数測定結果 TiNコーティング材 は、硬質Crめっきなどに比べ高荷重側で摩擦係数が低くなっている。

61



(a) ダイナミックミキシング

 $\times 500$ 



表2 金属表面改質技術の応用 イオンビームミキシングによる金属 表面改質技術の応用分野を示す。

| No. | 生成膜          | 応 用 製 品                          | 付加機能           |
|-----|--------------|----------------------------------|----------------|
| I   | Al2O3<br>AIN | メカトロニクス部品<br>0A(オフィスオートメーション)用部品 | 高強度            |
| 2   | TiN<br>CBN   | 精密金型<br>半導体用金型                   | 長 寿 命<br>生 産 性 |
| 3   | 同上           | 半導体用工具,精密治工具,各種ロール               | 同上             |
| 4   | Zr02         | タービン<br>エンジン用部品                  | 耐 熱 耐 腐 食      |
| 5   | CBN          | 半導体絶縁冷却板                         | 高熱伝導           |



図9 ダイナミックミキシングによる生成膜の密着性評価 イオ ンプレーティングによる膜ははく離しているが,ダイナミックミキシングの生 成膜ははく離はなく生成膜の密着性の高さを示している。

### 5 応用分野

イオンビームによる金属表面改質技術は, 強固な膜特性, 生成膜の制御性などから表2に示すような各分野への応用が 期待されている。具体的応用例として, ダイナミックミキシ ング処理を行なうことにより、寿命が約6倍と大幅に延びた 冷間鍛造金型を図10に示す。

#### 6 結 言

各分野で種々の表面改質技術が開発実用化されているが, 特にイオン注入と基着を併用するダイナミックミキシングは

図10 ダイナミックミキシングの応用例 ダイナミックミキシングに より,表面改質を施した冷間鍛造金型(自動車発電機の部品製作用)を示す。

クト設計となっている。

(2) 世界初の40kV直流半導体スイッチを備え、イオン源内放 電時の高速遮断, 高速再立上げが可能で, 高信頼性化を実現 した。

(3) 水冷式回転ホルダ及び回転中の直接温度計測により、低 温処理,均一膜生成が可能である。

(4) 10kW 4 ハース電子ビーム蒸着装置とパルス運転・自動運 転が可能な電源を備え, 高速成膜, 多層膜生成が可能である。

これら今回の装置は多数の特長をもっており、今後各分野 で製品展開を図ってゆきたい。

#### 参考文献

1) M. Satou, et al. Jpn. J. Appl. Phys. 22, 171(1983)

| 低温プロセスで強固な表面改質層を生成できる点などから今   |
|-------------------------------|
| 後幅広い応用が期待されている。               |
| 今回, 核融合プラズマ加熱装置で開発した技術を応用し,   |
| 大容量イオンビームミキシング装置を開発した。        |
| (1) 大容量イオン源を備え高速処理が可能であり、しかも高 |
| 効率化を図っているため電源・冷却容量とも小さく、コンパ   |

- 岡田,外:イオン,プラズマ利用金属表面改質装置,産業機械, 2)**420**, 33~36(昭60-9)
- 3) 有松,外:大容量金属表面改質装置,第一回イオン注入表層処 理シンポジウム予稿集, 143~145(昭60-11)
- 4) 萩野谷,外:イオン注入によるTiN膜生成の基礎検討,金属表 面技術協会第73回講演大会要旨集, 128~129(昭61-3) 5)
  - T.Sato, et al. : J. Vac. Sci. Technol. A4(3), 784(1986)

62