U.D.C. 621. 3. 049. 774' 14. 002. 56: [621. 385. 833. 2:658. 562]

特集 半導体製造技術

分析評価技術

Analytical Techniques

サブミクロンデバイスの時代を迎え, 接合リーク不良, ゲート耐圧不良, 配 線・コンタクト不良など、デバイスの微細な形状異常、局所的な膜質・界面劣 化,結晶欠陥の発生,微量有害不純物の混入などに起因するデバイスの特性不 良や信頼度不良が顕在化してきた。

田村正志* Masashi Tamura 土井 紘** Hiroshi Doi

このような状況に対処するため、不良個所の平面および断面構造を高精度で 観察し、分析するための走査電子顕微鏡技術、透過電子顕微鏡技術および微量 不純物検出技術の開発を行った。

これらの結果をデバイスの不良解析やプロセス評価に適用し、不良原因を明 らかにするなど、その有効性を実証した。

緒 言 1

表| サブミクロンデバイスの不良内容と解析手法 サブミクロンデバイスの時代を迎え、微細なデバイス構造 サブミクロ ンデバイスの時代を迎え、今後深刻になることが予想される不良内容と の不完全さや形状異常、イオン打ち込みやストレスなどによ 分析対象および解析手法を示す。 って生じる原子レベルでの局所的な構造の乱れ、膜質や界面 の劣化、極微量有害不純物の混入などに起因すると考えられ るデバイスの特性不良や信頼度不良が顕在化してきた。例え ば、極微量の重金属汚染や微小欠陥に起因した接合リーク電 流の増大、ゲート酸化膜の局所的薄膜化や膜質劣化による絶 縁耐圧低下,カバレジ低下や界面劣化によるコンタクト不良, ストレスマイグレーションによる配線劣化などがそれである。 これらは、微細化に伴い、プロセスに必要な加工精度がサブ ミクロンレベルになり、その微細パターンの急峻(しゅん)な 段差構造部に集中するストレスがSi基板中に微小欠陥を誘発 すること、異種材料薄膜の積層化に伴って生ずるストレスが 膜質や界面を劣化させること,およびイオン打ち込みやドラ イエッチなどによるダメージと微量重金属汚染の機会が増大 することが原因になっていると考えられるい。サブミクロンデ バイスの時代を迎え、今後ますます深刻になることが予想さ XMA(X線マイクロアナリシス法) れる不良内容と分析対象および解析手法を表1に示す。

このような状況下にあって、デバイスの開発を促進し、歩 留まりや信頼度を向上させるには、その不良個所をよく観測 し、解析、分析することが従来にもまして重要となってくる。 これからのサブミクロンデバイスの開発・量産化の鍵(かぎ) は不良解析技術が握っていると言っても過言ではない。

不良内容	不良事例	解析手法	分析対象
電流リーク	 ●DRAMのリフ レッシュ不良 ●SRAMの接合 リーク不良 	●TEM ●SIMS	●ダメージ, 欠陥 ●重金属汚染(ppb~ ppt)
絶縁耐圧不足	●ゲート耐圧不良	• TEM • SIMS	 酸化膜の形状,膜 質および欠陥 金属汚染(~ppm)
コンタクト・ 配線不良	● コンタクト導 通不良	 SEM SEM, TEM, AES 	 ●AIのカバレジ ●コンタクトの形状 ●界面やAIの膜質 ●界面汚染,密着性
	● AI 配線信頼度 不良	● SEM, TEM ●分析TEM, XMA, SIMS	 ●断線モードの特定 ●膜質,汚染(Cl, F など)
注:略語説明	TEM(透過電子顕 SIMS(二次イオン SEM(走査電子顕 AFS(オージェ雷	微鏡) 質量分析法) 微鏡) 子分光法)	

2 走査電子顕微鏡および透過電子顕微鏡による形 状観察

デバイスの不良解析では、形状観察の果たす役割はきわめ て大きい。デバイスが実設計寸法どおり製造できているかど

以下、物理分析手法によるデバイスプロセスの不良解析に 的を絞り、それらの解析事例と問題点について述べる。

うかを確認したり、また特性不良や信頼度不良を引き起こす 構造上の不具合を検出したりすることができなければ、デバ

63

** 日立製作所半導体設計開発センタ 工学博士 * 日立製作所半導体設計開発センタ

イス開発はもとより歩留まりや信頼度向上も期待できなくな るからである。デバイスが高集積化し,高性能化するに従っ て,ごく一部のわずかな不具合がデバイス特性や信頼度に重 大な影響を与えるようになってきている。事実をよく見るこ と(Fact Finding)がますます重要となるゆえんである。現在, この方面では走査電子顕微鏡(以下,SEMと略す。)と透過電子 顕微鏡(以下,TEMと略す。)が主要な役割を果たしている。 2.1 SEMによる観察

デバイスの断面構造観察(断面SEM²)では, 試料の観察すべ き面をへき開または研磨によって露出させ, そのままの状態 かあるいはエッチング処理によってその輪郭を鮮明にした後 SEM観察を行う。熟練した技術者の手によると, 研磨だけで 不良個所の適切な断面を削り出すことも可能であることから, この断面SEMはデバイスの不良解析に今や不可欠の手段とな っている。

観察の面では、最近、インレンズ形対物レンズ方式でオン グストロームオーダの分解能を持つ高分解能SEM³⁾が出現し、 ナノメートル領域の微細構造観察ができるようになった。こ のSEMでは、低加速電圧でも従来のSEMと同等の分解能が得 られるため³⁾、エッチング処理をせずにあるがままの姿に近い 状態での高解像度観察も可能となっている。観察対象によっ ては、エッチング処理をすると、観察すべき表面構造が変わ ってしまう場合がある。したがって、この低加速の高分解能 SEM観察技術は、不良解析のうえで表面のエッチング処理が 不要であるという点で、本質的に重要な技術となってきてい る。

以下,デバイスの断面形状と高分解能SEMの観察例について述べる。

(1) デバイスの断面形状評価

MOSトランジスタの断面形状を観察することは、デバイス 特性との関連で基本的に大切なことである。デバイス特性不 良を起こした不揮発性メモリトランジスタ部の断面SEM観察 例を図1に示す。これは研磨後エッチング処理をして観察し た例である。〇印に示したように、ゲート電極の片側がオフ セット(ゲートとN⁺拡散層の間にすきまが生じている。)になっ ていることがわかる。このような構造が生ずると、不揮発性 メモリの書き込み特性が劣化したり、MOSトランジスタのト ランスコンダクタンス g_m が劣化するなど、動作不良を引き起 こすことになる。

(2) Al配線・コンタクト部の形状評価

64

コンタクト径は微細化スケーリングとともに小さくなるが、 周辺の絶縁膜はそれほど薄くならないためにアスペクト比(穴 の深さ/径の比)は大きくなる。その結果、コンタクトの壁へ のAlの付着(ステップカバレジ)が少なくなり、Al配線の段切 れが生じやすくなる。また、Al-Si系合金配線では、熱処理条 件などの影響で配線中のSiが微小なコンタクト部に析出する

注:略語説明 PSG (リンガラス: Phosphosilicate Glass)

図Ⅰ 特性不良を起こした不揮発性メモリートランジスタの断面 SEM観察例 写真中の○内を見ると、ゲート電極とN⁺拡散層の間に すきまができている(オフセット構造)。

と、コンタクト抵抗が増加し、ひいては導通不良に至る場合 もある。この意味で、Al配線のカバレジやSi析出のようすを 詳細に観察することはきわめて重要である。

Al-Si系合金配線中に析出したSi粒を観察した例を図2に示 す。この場合,研磨によって生ずるダメージ(研磨きず,だれ, 研磨剤による汚染など)をイオンミリング(Arイオンによるス パッタ)によってあらかじめ除去したため,Si析出のようすが 鮮明に見える。Al配線の下側やSi基板が荒れて見えるのはイ オンミリングによるダメージのためである。この性質を利用 すると、ダメージによる紋様から、図2のように研磨でAl配 線中に埋め込まれる研磨剤とSi析出とを明確に区別すること ができる。しかし、このような利点もAlの膜質やコンタクト 界面あるいはSi基板の拡散層などを微細に観察しようとする場 合には当然障害となる。

このように高分解能SEMを利用すれば高解像度観察が可能となるが、これには高精度の試料作製が前提となる。特に、

1 µ m

分析評価技術 419

図2 AI-Si配線中に析出したSi粒の観察例 AI-Si配線中に析出 したSi粒の観察例(低加速高分解能SEMによる。)を示す。 図3 断面TEM観察用試料作製手順 デバイスの断面構造をTEM で観察する(断面TEM)ための試料作製の基本手順を示す。

本機を用いると、短時間に高精度で所望の断面を切り出し、 観察することができるうえに、その切断面がきれいで、平滑 であることを特長としている。高分解能SEM対応の試料作製 装置として大いに期待されるゆえんである。

2.2 TEMによる観察⁵⁾

サブミクロンデバイスの形状を高精度で計測したり、膜質 や微小欠陥などの内部構造を観察するには、SEMでは対応が 難しく、TEMを用いる必要がある。以下、試料作製と観察例 について述べる。

(1) TEM試料作製法

TEMでは、電子線の透過像を観察するため、試料は電子線 の透過できる厚さ、200 nm以下まで薄くする必要がある。断 面観察(断面TEM)用試料の作製手順を図3に示す⁶⁾。まず、 チップから観察領域を切り出す。薄く削る際に試料表面(デバ イス形成領域)が破損するのを防ぐため、チップの両側をダミ ーチップでサンドイッチ状に挟み込み接着する。次に、機械 研磨で~10 µm程度まで削り込み、さらにTEM用試料ホルダ に固定後、イオンミリングによって~200 nmまで薄くする。

図4 ゲート電極端部直下に発生した転位の断面TEM観察例 このように急峻(しゅん)な段差部では転位が発生しやすい。

65

この作業は時間を要するうえに、技術者の経験と技量に負う	ジスタのゲート電極端部直下に発生した転位の断面TEM観察
ところが大きく,まだ手作りの域を出ていない。このことが量	例を図4に示す。この転位はイオン打ち込みによるダメージ
産現場で不良解析を行ううえでの最大のネックとなっている。	とその上の絶縁膜による応力が、ゲート端に集中して発生し
(2) 結晶欠陥の観察	たものと予想される ^{7),8)} 。このような転位がN+拡散層の接合を
微小な結晶欠陥の観察にはTEMが有効である。MOSトラン	横切ると, 接合リーク電流の増大を引き起こすのである。

実際に接合リーク不良を起こしたMOSメモリの不良ビット 部を平面TEMで観察した例を図5に示す。これは基板から上 の層をリフトオフで取り除いた後,基板を裏面から~200 nm 厚まで削り込み観察したものである。不良を起こしたMOSト ランジスタのゲート電極端部に微小転位(エッジ転位)が認め られる。このように,接合近傍に転位が発生するとリーク電 流が増加し,デバイス特性が劣化する。この事例にもあるよ うに,結晶欠陥絡みの特性不良解析には平面TEM法が特に有 効である。平面TEM法では,不良ビットにねらいを定めた観 察が可能であり,かつ欠陥をつかまえる確率が断面TEM法に 比べて格段に高い。

(3) ゲート酸化膜の形状評価

DRAMのゲートやキャパシタに使われる熱酸化膜は年々薄 膜化し,最近では10~25 nmに達し,近い将来には10 nmを切 る⁹とさえ言われている。このように酸化膜厚が比例縮小則に 従って薄くなっても,電源電圧は必ずしも低下しないため, 動作中に酸化膜にかかる電界強度は増加することになる。し たがって,酸化膜内のわずかな欠陥や膜厚の不均一性が耐圧 低下を引き起こすようになる。ゲート酸化膜の観察例を図6 に示す。同図(a)は耐圧低下を起こしたゲート酸化膜端部の断 面TEM写真であり,・(b)は高い場合のそれである。同図の(a)は, (b)に比べてLOCOS(Local Oxidation of Silicon)酸化膜端部 のゲート酸化膜厚が局所的に薄くなっている。これはLOCOS 酸化膜形成プロセスでLOCOS酸化膜端部のSi基板表面が局所 的に窒化され,その窒化物(White Ribbonと呼ばれる。)が酸 化膜の成長を抑制するためである¹⁰⁾と説明されている。同図(a) のようになると,耐圧は低下してばらつきも大きくなる。こ のように,微細な形状異常は高分解能SEMを用いても観察は 難しく,TEMによってのみ可能となる。

(4) 薄膜の膜質評価

次に、Poly Si酸化膜とAl配線の観察例について述べる。 Poly Siは、ゲート電極、配線および抵抗として広く使われて おり、その酸化膜も層間絶縁膜として重要な役割を果たして いる。Poly Siはグレイン状結晶の集合体であるために、その 表面は完全には滑らかでなく、微視的に見ると凹凸がある。 この状態のPoly Siを酸化するのであるから、その酸化膜は平 たんにはならない。Poly Siの酸化膜を観察した例を図7に示 す。同図(a)は耐圧の低い場合であり、(b)は高い場合である。 (a)ではPoly Siのグレインが細かく、表面が凸凹状で、かつ酸 化膜中には未酸化Si片が多く見られる。それに対し、(b)ではグ レインが大きく柱状であり、表面も比較的平たんである。ま た、酸化膜も(a)で見られたような異常現象は見られず、きれ

1 μm

0.5 µm

(a)不良MOSトランジスタ部

66

(b) 転位発生個所の拡大

- 注:略語説明 LOCOS (LOCOS (Local Oxidation of Silicon) 酸化膜の略で,トランジスタを分離するための厚い酸化膜をいう。 フィールド酸化膜ともいう。〕 ソース,ドレーンはN形拡散層
- 図5 MOSメモリの不良ビット平面TEM観察例 接合リーク不良を起こした不良ビットを平面的に観察した例を示す。ゲート下の転位ループは接合リークとは無関係である。

分析評価技術 421

(a) 耐圧の低い場合

(a) 耐圧の低い場合

図6 ゲート酸化膜の断面TEM観察例 図(a)のゲート酸化膜端部 (○印)の形状に注目する。酸化膜が薄くなり波を打っているのがわかる。

図7 Poly Si酸化膜の断面TEM観察例 酸化膜の品質を評価した 例を示す。

いである。これはSiの生成速度や酸化速度が結晶方位によって 異なる11)からであり、酸化時に発生する応力が凹凸の先端部や コーナ部に集中し、酸化膜の成長を抑制するからである12)と説 明されている。同図(a)のようになれば実効的に酸化膜の薄い 部分ができたり,局所的に電界集中が起きたりして耐圧は低 くなる。このようにPoly Si酸化膜の品質は、Poly Siの膜質 に関係する。

Al配線の細線化とともに、エレクトロマイグレーションや ストレスマイグレーションなど、 信頼度上の問題が深刻化す る傾向にある¹³⁾。この意味で、Al配線の膜質を評価すること はPoly Si酸化膜のそれに劣らず重要である。Al-Cu-Si配線の TEM観察例を図8に示す。AlのグレインのようすやCuの偏析 のようすなどがよくわかる。このような薄膜の微細構造観察 もまたTEMの特徴を生かした好例と言える。

1.0 µm

67

図8 AI-Cu-Si配線のTEM観察例 粒(グレイン)やCuの偏析のよ うすがよくわかる。

TEMはプロセスの微細化とともに、デバイスの形状評価や 決すべき課題は多い。

薄膜の微細構造観察など,不良解析やプロセス評価のかなめ としてその利用度は今後ますます高まると思われる。それに

不純物評価技術 3

伴い、不良ビットをねらった断面TEM観察技術、デバイスの 微量不純物の評価も観察に劣らず重要である。例えば, Fe, Cu, Niなどの重金属が10¹²~10¹³個/cm³7)程度混入すると深 格子像観察技術, 試料作製のスループット向上など, 今後解

い準位を形成し、キャリアの生成・再結合中心になる¹⁾。また、 クラスタを形成して結晶欠陥を誘発する¹⁾。したがって、これ らがデバイスの活性領域に存在すると、接合リーク電流が増 大し、メモリの電荷保持時間が減少(DRAMのリフレッシュ特 性の劣化)するなどのデバイス特性劣化を起こす¹⁾。また、コ ンタクト界面になんらかのプロセスで絶縁性の物質が介在す ると、コンタクト抵抗を増大させ、さらには導通不良を引き 起こす。しかし、実用化されている物理分析手法のなかでも っとも感度の高いSIMS(二次イオン質量分析法)でさえ、前者 については、理論的に検出不可能なレベル¹⁰であり、後者につ いてもサブミクロンデバイスのコンタクト穴の底を分析する には、現状のプローブ径は大きすぎると言える。したがって、 SIMSは、現状では実デバイスの不良解析よりはむしろプロセ スや材料評価に適していると言える。ここでは、SIMSによる プロセス・材料の解析例について述べる。

(1) イオン打ち込みプロファイルの評価

微細化とともに接合深さはますます浅くなる傾向にある。 この浅い不純物ドープ層を形成するには、イオン打ち込みの 加速エネルギーを低くする必要がある。この一つの方法とし てBF₂+などの分子イオン打ち込みがある。この¹¹BF₂+イオン 打ち込み後の¹¹B+濃度プロファイルをSIMSによって測定した 例を図9に示す。同図に示したように、正常分布のほかに別 のピークを持つ異常分布が生じている。一般に用いられてい る後段加速形のイオン打ち込み機では、¹¹BF₂+イオンが装置内 の残留ガスと衝突し、そのときの分子-イオン反応により¹¹B+ イオンが生じやすい。異常分布はそれが後段加速によって加 速され、Si内に打ち込まれるためと説明されている¹⁴⁾。このよ うな不純物プロファイルの評価は、SIMSのもっとも得意とす るところである。

図 9 ¹¹BF₂⁺イオン打ち込みしたSi中の¹¹B⁺の濃度分布 表面の

(2) MoSi₂膜中の混入不純物評価

68

MoSi₂膜がホトエッチ工程で加工不良を起こしたときの MoSi₂膜中に混入したCuの深さ分布を図10に示す¹⁵⁾。Cuが ~10¹⁸個/cm³の濃度で混入しており,かつその濃度が深さ方向 に周期的に変化しているのがわかる。解析の結果,このCu濃度 の変化とスパッタ成膜時のプラズマの振幅とがほぼ同期して いたことから,スパッタ装置中のプラズマがMoSi₂ターゲット を支持するCu製のねじに周期的に接触したことによるスパッ タされたCuの混入であることが判明した¹⁵⁾。Cuが混入すると ドライエッチの加工性が悪くなる。これなどは、微量不純物 検出技術の開発成果を生かした好例と言える。

SIMSも,接合リーク不良の原因となるような極微量重金属 不純物の検出は不可能としても,現状の感度を大きく落とす ことなくプローブ径を1µm以下に絞れるようになれば,コン タクト導通不良でのコンタクト界面の解析など,実デバイス の不良解析手法としても大いに期待が持てる。µ-SIMSの開 発・実用化が待たれる。 SiO2は、イオン打ち込みした際の試料汚染によるSIMS分析への影響を低減するためにある。

4 表面・界面の評価技術

半導体プロセスにとって,薄膜の表面や界面の分析的評価 もまた大切である。以下,表面と界面の評価事例について述 べる。

(1) Al電極表面の評価

オージェ分析によるAl電極表面の元素分布測定例を図11に 示す。同図(a)はAuボンディングワイヤとの接合強度の強い場 合のAl電極であり、(b)は弱い場合のそれである。両者ともAl の表面にはOのほかに微量のCとFが分布しており、Alの表面 が酸化されていることがわかる。この酸化皮膜の厚さは、(a) では~8 nmであるのに対し、(b)のそれは20~30 nmと、(a)の 3 倍ないし4 倍も厚くなっている。このようにAlの表面が厚 く酸化されると、Auボンディングワイヤの付き(ボンダビリテ ィ)が悪くなる。ここで、Cは空気中のCO₂などが吸着したレベ ルであり、Fはパッシベーション膜の除去に用いたCF₄系のド ライエッチガスが吸着したものと思われる。

(2) コンタクト界面の評価

拡散層とAl配線とのコンタクト部で,拡散層の表面に薄い 酸化膜が形成されたり,あるいは汚染物質が付着したりする とコンタクト抵抗が増大する。 オージェ分析装置の電子線を1μm以下に絞り,コンタクト 径3μmのAl-Si基板界面を分析した例を図12に示す¹⁶⁾。同図(a)

のコンタクト抵抗の高いほうは(b)の低いほうに比べて界面付

分析評価技術 423

は歯が立たなくなってきている。それはSN比よく測定するに はコンタクト径に対してビーム径が十分小さい(コント径の~ 10)必要があるが、この条件が満たされなくなってきているこ と、アスペクト比が大きくなり、穴の底を汚染させずにスパ ッタすることができなくなってきていること、コンタクト周 辺の絶縁膜表面がプローブ電子線の広がりなどによって帯電 し、そのために電子線がゆらいで分析点がふらつくこと、な どの理由による。また、図12の事例のように、分析に適する よう試料を加工することも容易でなくなってきている。コン タクト界面の分析は今後の大きな課題である。

表面や界面の評価手段としては、オージェ法のほかにも感 度の点で優れているSIMSや状態分析の優れているESCA(光 電子分光法)などがある。長所を生かし目的に応じて使い分け る必要がある。しかし、両者とも現状での実用的なビーム径 は数十~数百マイクロメートルであり、デバイスへの適用に は遠く、ビーム径の細線化への努力に期待したい。

5 将来展望

サブミクロンデバイスの時代に入り、デバイス構造もプロ

図10 Cu混入のあるMoSi2膜中のCu濃度分布 スパッタMoSi2膜中に混入したCuの深さ方向への濃度分布を示す。

近でのAlとSiの分布のすその交差が急峻であり,かつ界面が ~20 nm程度酸化されていることがわかる。この界面の酸化が, コンタクト抵抗を増大させたのである。なお,この分布測定 は深さ方向の分解能を上げるため,Alを~0.1 µm程度まで化 学エッチングで薄くした後行った。これは長時間スパッタし 続けると,選択スパッタなどの影響によって分析面が荒れて, 深さ分解能が落ちるからである。

しかし,実用ビーム径が0.1~0.2 µmまで絞れるµ-オージェ でも今日のサブミクロンデバイスのコンタクト界面の分析に セスも共に一段と高度かつ複雑になってきた。それに伴いデ バイスの、それも不良個所の断面を原子レベルで観察したり、 そこに含まれる微量の有害不純物を検出したりする技術が従 来にもまして強く求められるようになると考えられる。前者 では試料作製の困難さが、後者については感度的に物理限界 という壁が立ちふさがっている。

また,今まで隠れていたストレスがさまざまな形で,さま ざまな場所に顔を出すようになり,それがサブミクロンデバ イスの特性や信頼度に及ぼす影響はますます深刻になると思 われる。したがって,微小部のストレス測定も今後の重要な 技術課題である。

デバイスの超微細化とともに,分析点が見えなくなってきている。不良解析では,顕微技術が微小部高感度計測に劣ら

69

図12 オージェ分析によるAI/Si界面の元素分布AI, Si, Oの深さ方向への分布測定を行った例を示す。

オージェ分析でAI/Si界面の0分布(酸化の有無)に注目し,

ず重要となってくる。不良解析・分析評価技術の重要性を思うとき, 克服すべき課題は多い。

6 結 言

SEMで不良個所の断面形状を高精度で観察したり, TEMで デバイスの平面や断面形状を高分解能で観察したりするため の試料作製技術を確立し, 断面SEM, 平面TEM, 断面TEM の三つの観察手法の実用化を図った。また, 微量不純物検出 技術の開発を行い, Si中のAl, Cr, Fe, NiおよびCuの定量分 析法を確立した。

これらの技術をデバイスの不良解析やプロセス評価に適用 し,不良原因を明らかにするなど,その有効性と歩留まりお よび信頼度向上に対する効果を実証した。

参考文献

70

- 三上: ULSI用シリコンウエハ結晶技術,日本金属学会会報, 28巻,1号,7~13(1989)
- T. Mills, et al. Precision VLSI Cross-sectioning and Staining, Proc. IEEE Annual Reliability Physics Symposium, 214(1982)

- 4) 那須,外:FIB(集束イオンビーム)によるLSIの局所・選択的 断面出し及びSIM(走査イオン顕微鏡)によるその場観察,第49
 回応用物理学会学術講演会,5P-N-11(1988年秋)
- 5) R.B. Marcus, et al. : Transmission Electron Microscopy of Silicon VLSI Circuits and Structures, John Wiley & Sons, New York, (1983)
- 6) 青木:透過電子顕微鏡によるシリコン超LSI素子の断面観察, 日本結晶学会誌,26,236(1984)
- (7) 矢木:半導体プロセス・デバイス計測技術,第1回総論,月刊 Semiconductor World, 6, 172~178(1988)
- 8) 高野:同上 第7回バルク結晶の評価,同上,12,206~211 (1988)
- 大路:同上 第2回絶縁膜の評価,同上,7,188~195(1988)
- 10) E. Kooi, et al. : Formation of Silicon Nitride at a Si-SiO₂ Interface During Local Oxidation of Silicon and During Heat Treatment of Oxidized Silicon in NH₃ Gas, J. Electrochem. Soc. 123, 1117(1976)
- R.B. Marcus, et al. Polysilicon/SiO₂ Interface Microtexture and Dielectric Breakdown, J. Electrochem. Soc. 129, 1282(1982)
- 12) R.B. Marcus, et al. : The Oxidation of Shaped Silicon Surfaces, J. Electrochem. Soc. 129, 1278(1982)
- 13) 日野出:シリコンLSIにおけるアルミニウム配線材料の現状, 日本金属学会会報,28巻,1号,40~47(1989)
- 14) 徳山, 外:VLSI製造技術, 日経BP社, p.128(1989)
- 3) T. Nagatani, et al. Development of an Ultra High Resolution Scanning Electron Microscope by Means of a
 - Field Emission Source and In-Lens System, Scanning Microscopy, 1, 901~909(1987)
- 15) 土井,外: IMAによるSi単結晶中のAl, Cr, Fe, Ni及びCuの 定量分析とLSIデバイスへの応用,電気学会電子材料研究会, 86-EFM-1(1986)
- 16)田村:半導体における表面計測技術と故障解析,総合技術資料 「電子部品の製造における欠陥・トラブル防止対策」,経営総合 センター刊, p.90(1983)