特集 光伝送技術

U.D.C. 621.372.8.029.72: (621.391.64:687.068.2)

光受動部品

言

Optical Passive Components

高度情報化時代の発展の一翼を担う光通信技術はその広範な利用が期待され ており、この実現のためには、光信号を処理、制御する機能を持つ光受動部品 の開発が不可欠である。

本稿では、日立電線株式会社で開発している光ファイバ形および導波路形受 動部品の開発状況について述べる。接続損失や伝送損失が小さい特徴から光フ ァイバ形の開発が先行し、光分岐器、光スイッチ、光スターカップラを製品化 してきた。しかし,将来の広帯域ISDN (Integrated Services Digital Network) や全光システム化を実現していくには、従来の性能に比べてより多機能化、集 積化ができ,低コストが期待できる導波路形が有望であると考えられ,光合分 波器や光スターカップラを開発した。

井本克之*	Katsuyuki Imoto
中村正志**	Masashi Nakamura
樟山裕幸**	Hiroyuki Kunugiyama

光ファイバ通信システムの高度化および適用領域の拡大を 図るためには,発・受光素子,光ファイバ以外に,光方向性 結合器、光スターカップラ、光合分波器、光スイッチなどの 光信号処理および制御機能を持った光受動部品が不可欠であ る。

これらの光受動部品には、小形化・経済化・高性能化が要 求され、光ファイバ通信システムの発展に対応して、種々の 方式の提案および改良がなされている。初期の段階では微小 レンズやプリズムなどの個別部品の組み合わせからなる高性 能なバルク形が開発され、一部は今でも実用に供されている。 しかし,経済性,量産性,機能集積性などに問題を残してお り、この問題を解決する方法として、光ファイバ形が開発さ れている。さらに最近では、将来性を期待できるという点で、 導波路形の研究開発が活発に進められている。

本稿では、日立電線株式会社で開発している光受動部品を バルク形,光ファイバ形および導波路形に分類して、その仕 様、性能および用途について述べ、そのうち光ファイバ形お よび導波路形受動部品の代表的なものに関して、構成および 特性を述べる。また、光受動部品の今後の展開についてもあ わせて述べる。

光受動部品の分類 2

いる光受動部品の代表例,仕様,性能および用途を表1に 示す。

バルク形部品としては、プリズムやレンズ、誘電体多層膜 フィルタなどを組み合わせて構成した光分岐器, 光合分波器, 光ロータリジョイントなどを開発している。しかし、最近で は、光ロータリジョイントのような特殊機能を要求される光 部品以外は、適用のメリットを出しにくい状況になってきて いる。

光ファイバ形部品は, バルク形に比べ低コストで実現でき る点と、伝搬損失および光ファイバとの接続損失が小さい点 が特徴である。この特徴を生かして単一モードおよび多モー ド光ファイバ用の光方向性結合器、光スターカップラ、光合 分波器, 光スイッチ, 単一モード光ファイバ用ポラライザや デポラライザなどを開発している。単一モード光ファイバ形 部品は、コヒーレント光伝送、光交換システムなどの高性能 光情報通信システム用のほかに,高精度光計測および光セン サ用に適用することが可能である。多モード光ファイバ形部 品は、光LAN、光MAP(Manufacturing Automation Protocol), 光ホームバス, 移動体内光通信などの比較的簡易で低 コストなシステム用へ展開することができる。

導波路形部品は、小形化・経済化・機能の複合化・集積化 を最も期待できる構成である。現状では、単一モード用の石

51

光受動部品の形態は,バルク形,光ファイバ形および導波 英系ガラス導波路およびLiNbO3系導波路を用いた各種光部品 路形に分類することができる。日立電線株式会社で開発して (光方向性結合器, 光スターカップラ, 光合分波器, 光変調器

* 日立電線株式会社 電線研究所 工学博士 ** 日立電線株式会社 日高工場

表 - 光受動部品の分類 日立電線株式会社で開発しているバルク形,光ファイバ形および導波路形光受動部品 の代表例,特徴および用途を示す。

分	類	光受動	的 部 品	仕様・性能	用途	
ノ リ ノ 开	ヾ レ	光分岐器		過剰損失<3dB FCコネクタタイプ		
		光合分波器		波長(μm):0.78/0.88, Ι.15/1.3, Ι.2/1.3 挿入損失<3dB	短距離テーク通信用	
	7 3	光ロータリジ	ジョイント	端 子 数:2~12ポート 挿入損失:3~7.5dB	ロボットの回転部 マシニングセンタ ローダ,アンローダ クレーン,ほか	
光ファ	単一モード用	光方向性結合	計	過剰損失<0.6dB		
		光スターカッ	ップラ	入力(出力)ポート数: 8 過剰損失<3dB	高性能光情報通信システム 光計測 光センサ	
		光合分波器		波長(μm):0.78/1.3, 1.3/1.55 挿入損失<2dB <0.5dB		
		光スイッチ		挿入損失<3dB 切換時間<25ms 駆動電圧DC5V		
イ		光ポラライザ 光デポラライザ		挿入損失<1dB	光センサ 光ファイバジャイロ	
バ 形				消 光 比<-40 dB		
	多モード用	光方向性結合器		過剰損失<0.5dB 分岐比:十, 十, 5	光LAN	
		光スターカッ	ップラ	入力(出力)ポート数:64 ひねり融着延伸タイプ	光MAP 光ホームバス	
		光スイッチ		挿入損失< 2 dB 切換時間<25 ms	移動体内光通信	
導波路形		光方向性結合器		過剰損失<2dB		
	導波路形	光スターカッ	ップラ	入力(出力)ポート数: 4 過剰損失<3dB	各種光伝送システム用 光交換システム	
		业本力计理	WDM用	波長(μm):1.3/1.55 挿入損失<3dB	光情報処理システム 光計測	
		FDM用	波長(μm):1.29/1.31 挿入損失<3dB	元センサ		
		光変調器		波長(μm):0.85 挿入損失<3dB	光計測 光センサ	

注:略語説明 WDM(Wavelength Division Multiplexing), FDM(Frequency Division Multiplexing)

など)の研究開発を進めている。将来は複数の材料系(石英系 ガラス,誘電体結晶系,磁性体系および化合物半導体系)によ って構成した光集積回路や光・電子集積回路へ移行していく ものと考えられる。

3 光ファイバ形受動部品

3.1 単一モード用光ファイバ形受動部品

この節では,融着延伸形の光分岐器と光ファイバ移動形の 光スイッチに的を絞って特性を述べる。

(1) 光分岐器

光分岐器は同一の光信号を分配・結合する光配線機能を持ち、入力ポート数:出力ポート数が1:NとN:Nのものがある。ここでは2:2の光方向性結合器について述べる。 光方向性結合器の製造原理を図1に示す。この光部品は るガス量などが自動制御される。

1.3 µm用光方向性結合器の過剰損失のヒストグラムを図2 に示す。平均損失は0.16 dBと低損失である。分岐比および過 剰損失の温度特性を図3に示す。-40~80℃の範囲できわめ て安定な特性である。分岐比の入射偏光特性は0.4%以下であ る。上記光方向性結合器の外観を図4に示す。

(2) 光ファイバ移動形スイッチ

ループ式光LANでは,障害時に端局装置をバイパスするために,光ファイバ伝送路を切り換えたり,ループ伝送系の機器を切り離したり(または接続したり)する光スイッチが必要となるが,この光スイッチは高速動作を要求されない。

上記用途に開発した2×2形の光スイッチの外観を図5に 示す。これは2本の対向した光ファイバを機械的に駆動して 移動させることによって,光路切換を行う方式のものであ

Fused Taper Typeとも呼ばれ、2本の光ファイバをそろえ、 る。 加熱一体化しながら延伸して製造する。テーパ部では電磁界 間2 分布がコアからクラッドにしみ出し、他の光ファイバに結合 ん) する。本装置では出射光パワーがモニタされ、所定の分岐比 **3.2** となるようにバーナ、ステージの移動量、バーナに供給され

る。-20~70 ℃の温度範囲で,挿入損失3dB以下,切換時 間25 ms以下の特性が得られている。この光スイッチは防塵(じ ん)構造を採用し,切換寿命5×10⁵回以上を確認している。 3.2 **多モード光ファイバ形受動部品**¹⁾ この節では多分岐形の光分岐器(いわゆる光スターカップラ)

52

図 | 融着延伸形光方向性結合器の製造原理 分岐比のモニタ,ステージ,バーナの移動量やバーナへ供給するガス流量の制御は、コンピュータで自動化されている。

1.0

60 C 0.2 dB以下

60 r

-0.4

53

 $\lambda = 1.31 \ \mu m$

図3 融着延伸形光方向性結合器の温度特性 温度範囲-40~ 80℃で,分岐比と過剰損失は非常に安定している。

図 2 融着延伸形光方向性結合器の過剰損失ヒストグラム 約100 個の試作結果では,80%以上の割合で0.2 dB以下が得られている。

の特性について述べる。光スターカップラは、セルコントロ ーラと工場構内などに分散配置されたターミナルサーバやパ ーソナルコンピュータなどの端末機器を接続し、光MAPシス

テムを構成するためのキー部品である。入力および出力ポー ト数が64のものまで実現している。 GI形光ファイバを用いた32×32形光スターカップラの挿入 損失のヒストグラムを図6に示す。1,024個のサンプル数に対 して、挿入損失17.6 dB,標準偏差0.24,過剰損失2.23 dBお

図 4 融着延伸形光方向性結合器の外観 補強部を含めた寸法は, 直径×長さ= ϕ 3 mm×40 mmとコンパクトである。

光ファイバ移動形スイッチの外観 図 5 低挿入損失, 短時間切換 特性が実現され、また温度特性、信頼性にも優れている。

多モード光ファイバ形スターカプラの外観 石英ガラス管 义 7

図 6 32×32形光スターカップラの挿入損失ヒストグラム 新し い構成および製造方法により,低挿入損失および低分配偏差特性を実現 している。

よび分配偏差2.0dBを実現している。この光スターカップラ は,間接加熱法を利用した新しい方法で製作されている。

上記光スターカップラの外観を図7(a)に示す。また同図(b) にそれを19インチラックに収納した外観を示す。

導波路形受動部品 4

54

内にひねり融着部を持つ新しい構成法、およびコネクタ接続だけで容易 に使用できるラック構造を用いている。

導波路の構成および製造方法^{2),3)} 4.1

導波路構造として、屈折率の高い矩(く)形状のコア導波路 を低屈折率のクラッドで覆った構造の埋込形を用いている。 この導波路で光受動部品を構成する場合には、導波路の屈折

図8 埋込形導波路の製造方法 導波路の構造パラメータを高精度 に実現できるガラス膜形成と、ドライエッチングプロセスに特徴がある。

光受動部品 367

率、構造寸法および表面の均一化ならびに低損失化が重要で ある。これらを考慮に入れた導波路の製造方法の概要を図8 に示す。半導体および光ファイバの製造方法を応用している。 すなわち、石英ガラス基板上に、電子ビーム蒸着法によって 屈折率が石英ガラスよりも約0.25%高いSiO₂-TiO₂系のコア用 ガラス膜を形成し、その膜を高温熱処理後、スパッタリング 法によってWSix(金属マスク)膜を形成する。次いでフォトリ ソグラフィー、ドライエッチングによってコア導波路をパタ ーン化する。フォトレジストおよびメタル膜の除去後、再度、 高温熱処理を施し、上記パターン上に光ファイバの製造方法 を応用した火炎堆(たい)積法によってSiO₂-P₂O₅-B₂O₃系多孔 質ガラス層を堆積させる。その後、焼結し透明ガラス化して、 クラッドガラスを構成する。このプロセスには二つの特徴が ある。

第一の特徴は、電子ビーム蒸着法によってコアガラス膜を 形成するため、上記ガラス膜の屈折率および膜厚の制御性が 良い点である(屈折率および膜厚の偏差:±0.01%および± 0.42%)。

第二の特徴は、ガラス膜に対するエッチング選択比の大き いWSix膜をガラス膜のエッチングマスクとして用いた点であ る。二つの平行に配置されたコアガラス導波路パターンの走 査電子顕微鏡写真の一例を図9に示す。コア導波路側面の垂 直度はほぼ90度であり、またコア導波路幅の寸法減少も0.4 µm 以下に抑えられている。 テムでは,波長の異なる光信号を合波あるいは分波する役割 を担う光合分波器が不可欠である。日立電線株式会社では, 数百ナノメートルの波長間隔の光を分割多重する,いわゆる 光波長分割多重伝送用合分波器として,1.3/1.55 µm帯光合 分波器を,また数十ナノメートルの波長間隔の光を分割多重 する光周波数分割多重伝送用合分波器として,1.29/1.31 µm 帯光合分波器を開発している。以下に,これらの構成および 特性について述べる。

(1) 光方向性結合器形合分波器5)~7)

光合分波器の構成を図10に示す。同一構造の光方向性結合 器A, BおよびCを用いることにより,入力ポート*i*から入射 した波長 λ_1 (1.55 µm), λ_2 (1.3 µm)の光信号に対して,ポー ト2に波長 λ_1 の光信号が,ポート4に波長 λ_2 の光信号が分波 して取り出される。すなわち,光方向性結合器の波長依存性 を利用して分波するもので,まず初段のAで波長 λ_1 と λ_2 の光信 号を分波する。次いでB(C)で,波長 $\lambda_2(\lambda_1)$ の非希望光をポー ト1(3)に分波させることにより,ポート2(4)に入ってく る漏えい光を抑圧する。これによって波長 λ_1 と λ_2 の間に高い アイソレーション特性が得られる。

4.2 光合分波器

1本の単一モード光ファイバを用いた光波長(光周波数)分 割多重伝送方式が注目されるようになってきた⁴⁾。この方式を 用いると,双方向伝送,異種信号の同時伝送など,経済的で 拡張性に富んだシステムを構築することができる。このシス

上記光合分波器の分波特性を図11に示す。通過域損失は, 光ファイバと導波路の結合損失(約2dB)および導波路伝搬損 失(約0.5dB)を含めて2.5dB程度を得ている。また,波長間 のアイソレーションは30dB以上を実現している。なお,上記 光ファイバと導波路の結合損失は,CO₂レーザ光により融着接 続した場合の値を示したものである。光ファイバと導波路の 融着接続部の写真を図12に示す。

上記光合分波器の分波出力光の温度特性を図13に示す。 -10~50℃の範囲で、分波出力光の変動は0.1 dB以下と小さい値を示している。また、偏光依存特性についても、図14に示

図 9 クラッド膜を被覆する前のコアガラス導波路の走査電子顕微 鏡写真 コア導波路側面を垂直性よく,かつ導波路幅の寸法減少も小 さく,パターン化されている。 図10 光波長分割多重伝送用合分波器の構成図 高アイソレーション特性を得るため,同一構造の光方向性結合器を3個(A, B, およびC) 用いている。

55

図|| |.3/1.55 µm帯用光合分波器の分波特性 中心波長ずれが ほとんどなく、低損失と高アイソレーション特性を実現している。

図13 1.3/1.55 µm帯用光合分波器の温度特性 -10~50°Cの温 度範囲で,分波出力光の変動は0.1dB以下ときわめて小さい。

すように入射直線偏光の角度に対して0.2dB程度の低い変動 しか認められず, 信頼性および安定性の面で問題のないこと がわかった。

コネクタ付き光ファイバを融着接続した光合分波器の外観 を図15に示す。この光合分波器は光ファイバ形を3個組み合

図14 1.3/1.55 µm帯用光合分波器の偏光特性 入射直線偏光の 角度に対する分波出力光の変動は0.2dB程度であり、偏光依存性は小さ い。

ツェンダー形であり、入出力部、2個の3dBカップラおよび

わせたものに相当するが,挿入損失3dB以下の低損失値と 以下の小形サイズで実現している点で光ファイバ形よりも有 利である。

(2) マッハツェンダー形光合分波器 光合分波器の構成を図16に示す。この光合分波器はマッハ

56

二つのアーム(1および2)で構成している。アーム1は湾曲 部を設けることにより、アーム2からLだけ導波路長が長くな っている。これにより、波長に依存した位相差を与えること ができる。 波長1.29 µmと1.31 µmの2波を用いた場合の上記光合分波

光受動部品 369

図15 1.3/1.55 µm帯用光合分波器モジュールの外観 コネクタ付 き単一モード光ファイバを接続した光合分波器モジュールを示す。

図17 マッハツェンダー形光合分波器の分波特性 図9の光合分 波器の分波特性であり,導波路のアームにCO₂レーザ光を照射することに よって,中心波長のずれを制御できることを示している。

図16 マッハツェンダー形光合分波器の構成図 波長間隔の狭い 二つの光信号を分波するために、2個の3dBカップラ、導波路長の異な る二つのアームを用いている。

器の分波特性の一例を図17に示す。通過域損失3dB以下,ア イソレーション約20dBを得ている。なお、同図で実線および 点線で示した特性は、導波路のアームにCO₂レーザ光を照射前 および照射後の結果を示したものである。この光合分波器は、 製造プロセスによる導波路パラメータ(幅、厚みおよび屈折率 差)のわずかな偏差によって中心波長が大幅に変動する。今回、 導波路のアームにCO₂レーザ光を照射することによって、クラ ッドガラス(SiO₂-P₂O₅-B₂O₃系)の屈折率を変え、中心波長を 制御した。この光合分波器のサイズも光ファイバ形に比べて $\frac{1}{5}$ 以下に小形化されている。

4.3 光スターカップラ

図18 4×4形光スターカップラの構成図および4分配された出力 光のニアフィールドパターン 同一構造の光方向性結合器を4個用 いた構成により,分配偏差の小さい光スターカップラを実現している。

57

(b)

4×4ポート形光スターカップラの構成を図18(a)に示す。
これは同一構造の光方向性結合器を4個用いて構成すること
により、4分配特性を実現しようとするものである。波長1.5
μm帯での過剰損失約3dB、分配偏差±1dBが得られている。
現状では光ファイバ形に比べ、過剰損失が大きいが、光ファ
同図(b)にポート1から光信号を入射させた場合の出力ポート

図ることが可能である。なお、サイズは光ファイバ形に比べ 大幅に小形化されている。

5 今後の展開

光ファイバ通信がさらに多様化・高度化し,適用領域を拡 大していくためには、光受動部品のいっそうの小形化・経済 化・高性能化が不可欠となってくる。これを実現していくた めには、導波路構造による集積化および光能動部品、電子回 路部品との一体化の方向に移行していくと考えられる。した がって、今後の課題は、導波路の量産化技術、光ファイバと 導波路の自動融着技術、自動組立・実装技術、異種材料の組 み合わせによる機能の複合化および集積化技術の確立を図る ことである。また、光伝送以外に、光交換、光情報処理、光 計測、光センサなどの分野への適用も積極的に展開し、需要 を喚起していくことが重要であろう。さらにはアレー化、複 数の光受動回路の集積化、よりいっそうの小形化などの導波 路特有のメリットをだせる構成法、用途などを見いだしてい く必要があろう。 低コスト化が期待でき,将来,主流になるとみられている。 半導体の膜形成および微細加工技術,および光ファイバ火炎 堆積技術を応用し,埋込形構造の光合分波器,光スターカッ プラなどを開発した。

高度情報化時代の進展に伴い,今後,ますます光ファイバ 通信の実用化が促進される状況にあり,光信号の処理,制御 機能を持った光受動部品の重要さはこれまで以上に高くなる 趨(すう)勢にある。使いやすく,多様なニーズに適した製品 の開発を推進していく予定である。

参考文献

- K. Imoto, et al. New Biconically Tapered Fiber Star Coupler Fabricated by Indirect Heating Method, IEEE Journal Lightwave Tech. LT-5, pp.694~699(1987)
- 2) K. Imoto, et al. Guided-Wave Multi/Demultiplexers with High Stopband Rejection, Appl. Opt.26, pp.4214~4219(1987)
- 3) K. Imoto, et al. : Silica Glass Waveguide Structure and Its Application to a Multi/Demultiplexer, in Technical Digest, Fourteenth European Conference on Optical Communications, Brighton(1988), pp.577~580

6 結 言

日立電線株式会社での,光ファイバ形および導波路形の光 受動部品の開発状況について述べた。

光ファイバ形受動部品は,接続損失,伝送損失が低い特徴 がある。単一モードおよび多モード用として,融着延伸技術 を用いた光分岐器と光スターカップラ,光ファイバ伝送路切 換法による光スイッチなどを製品化した。

導波路形受動部品は、多機能化、集積化ができるうえに、

- T. Miki, et al. : Viabilities of the Wavelength-Division-Multiplexing Transmission System over an Optical Fiber Cable, IEEE Trans. Commun. C-26, 1082(1978)
- 5) 井本,外:導波路型光合分波器,電子情報通信学会,光・量 子エレクトロニクス研究会OQE87-7,47~53(1987)
- 6) 井本,外:導波路型光合分波器,日立電線 No.8, 19~24 (1989)
- 7) K. Imoto, et al. Compensation for Fabrication-Induced Center Wavelength Shift in a Coupled Waveguide Type Multi/Demultiplexr, Appl. Opt.28, pp.1904~1909(1989)

8