U.D.C. 621.311.26: [621.352.6-634.9:546.264-143]

溶融炭酸塩型燃料電池発電装置の開発 **Development of Molten Carbonate Fuel Cell**

高効率発電と燃料の多様化が期待できるMCFC(Molten Carbonate Fuel Cell:溶融炭酸塩型燃料電池)による発電が、次世代の有力な発電技術として注 目されている。この燃料電池の要素技術開発として、電極では特にアノードの 強度向上を, 電解質板では均一な成板化技術を, またセパレータでは高耐食性 材料の探索を進めている。NiにMgやAlを添加するとアノードの強度が向上する こと、25Cr・20Ni鋼にAlやYを添加すると耐食性が向上することなどを明らか にした。この要素技術を基に,スタックの長寿命化と大容量化および冷却技術 開発も進めており、10kW級スタックで3,000時間の運転を達成した。また、25 kW級複合大容量型スタックで、27.8 kWの出力を達成し、100 kW級スタック のめどを得ることができた。

加原俊樹*	Toshiki Kahara
大塚馨象**	Keizô Ôtsuka
竹内將人***	Masato Takeuchi
福井 寛****	Yutaka Fukui
小林成嘉****	Nariyoshi Kobayashi

言 1 緒

燃料電池は燃料の持つ化学エネルギーを直接電気エネルギ

ーに変換する発電装置であり、環境調和性に優れ、かつ高い 発電効率が期待できる新しい発電方式である。燃料電池は用 いる電解質や燃料の種類によってその名称が異なる。電力用 としては、リン酸を電解質とするPAFC(Phosphoric Acid Fuel Cell:リン酸型燃料電池),溶融炭酸塩を電解質とする MCFC(Molten Carbonate Fuel Cell:溶融炭酸塩型燃料電 池), 固体電解質を用いるSOFC(Solid Oxide Fuel Cell:固 体電解質型燃料電池)があり、PAFCを第1世代燃料電池、 MCFCを第2世代燃料電池, SOFCを第3世代燃料電池と名 づけている。

MCFCの開発は国内外で広く進められており、なかでも日 本および米国が精力的である。日本では通商産業省工業技術 院のムーンライト計画の一環として昭和56年度から取り上げ られ、昭和59年度からはNEDO(新エネルギー・産業技術総合 開発機構)が開発の母体になり、国内電力機器メーカーに電池 本体の開発を委託し、わが国独自の技術確立を目指している。 日立製作所は、ムーンライト計画に燃料電池の開発が取り上 げられた当初からこの開発に参画している。

MCFCは炭酸塩の溶融物を電解質として用いるため、運転 温度が約650℃と高く、しかも厳しい腐食環境下にさらされる ことから,特に材料面およびガスフローなど技術的に解決し なければならない多くの課題を抱えている。しかし、高効率 熱効率が期待される一方, 電池内では炭酸ガスの濃縮も行わ れており,将来炭酸ガス対策を検討するうえでも非常に有望 な新エネルギー方式の一つである。本稿は日立製作所での MCFCのセル要素技術、およびスタック技術開発状況につい て述べるものである。

なお,日立製作所はバブコック日立株式会社と一体になっ て,溶融炭酸塩型燃料電池発電システム技術研究組合(以 下, MCFC研究組合と言う。)にも参画して, 発電システム制 御, 燃料改質器およびガス精製の研究開発も続けているが, これらについては別の機会に述べる。

発電原理と特徴 2

MCFCの発電原理と基本構成を図1に示す。燃料ガスとし て水素(あるいは一酸化炭素を含む。)を,酸化剤ガスとして酸 素と炭酸ガスを、電解質として炭酸リチウムと炭酸カリウム の混合物を用いる。炭酸リチウムと炭酸カリウムの配合割合 はモル比で62対38であり、その融点は約488℃であるい。電池 は650℃付近の温度で運転され、その温度では炭酸塩は溶融し て水に近い粘性を持つ液体になり、炭酸イオン導電性を示す。 アノードに燃料ガスを、カソードに酸化剤ガスを供給すると、 おのおのの電極で次式に示す電気化学反応が生じ, 直流電力 が得られる。電池全体としては、水素と酸素が反応して水を 生成する反応である。

であり、電気と熱の両面からの有効利用によって80%以上の

* 日立製作所 日立工場 ** 日立製作所 日立工場 工学博士 *** 日立製作所 日立研究所 **** 日立製作所 日立研究所 工学博士 ***** 日立製作所 機械研究所 工学博士

(a) 作動原理

(b) 電池の基本構成

図 | 溶融炭酸塩型燃料電池の作動原理と基本構成 燃料である水素と酸化剤である空気中の酸素,および炭酸ガスが反応して,水を生成する 過程で電気が得られる。実際の電池は,(b)図に示したようにセルが積み重ねられる。

 $\mathcal{T} / - \mathcal{F} : H_2 + CO_3^{2-} \longrightarrow H_2O + CO_2 + 2e^- \dots (1)$

交変換部で構成される。この発電システムの特徴は、(1)発電

カソード: $CO_2 + \frac{1}{2}O_2 + 2e^- \longrightarrow CO_3^{2-}$ (2)

MCFCの単位電池(セル)電圧は,定格発電時で約0.8 Vである。したがって,実際の発電では図1の(b)に示した基本構成 セルを多数積層するとともに,セル面積の拡大を図って高出 力化を達成することになる。

MCFCを用いた発電システム例を図2に示す。天然ガスや 石炭から水素を作る燃料製造部,電池本体部,電池の排熱を 有効に利用する排熱回収部,および直流を交流に変換する直

96

効率が高いこと(45~60%),(2)石炭ガスの効果的利用ができ ること,(3)電池からの高温排熱が有効に利用できること,(4) 環境との調和性が良く,需要地に隣接して設置できること, (5)部分負荷発電効率が高く,負荷応答性が良いこと,などで ある。

MCFC発電システムの発電効率を,他の発電方式と比較して図3に示す²)。MCFCによる発電は広い出力範囲で高い発電 効率が得られることを示しており,小形分散発電から大容量 集中発電まで幅広い用途が期待できる。

図2 溶融炭酸塩型燃料電池発電システム 電力事業用を想定した発電システムであり,排熱を電力として回収するボトミングサイクルが備え られている。

溶融炭酸塩型燃料電池発電装置の開発 575

原料 スラリー 「テープ」 「アクター 乾燥部 ビータ グリーンシート ベルト

図4 ドクターブレード法の原理 テープの回転とドクターブレー ドによって、スラリーが薄い板状に成形される。

図3 各種発電システムの容量と発電効率(HHV: High Heat Value 基準) 溶融炭酸塩型燃料電池の発電効率は広い出力容量範囲で
 45~60%という高い値が期待できる。

3 セル要素技術開発

3.1 電解質板

電解質板は、電解質である炭酸塩とこれを細孔中に保持す る多孔質セラミックス板から成り、多孔質セラミックス板を 電解質基板と言う。電解質板の開発では、大面積で薄くかつ 割れない電解質基板を製造する技術を開発することが重要な 課題である。日立製作所ではこの問題を解決するために, LiAlO₂(リチウムアルミネート) 微粉末にアルミナ繊維を添加 して製造している³⁾。アルミナ繊維は、基板の機械的強度を向 上する目的で添加している。この電解質基板は、ドクターブ レード法(テープキャスティング法)によって成板化しており, その原理を図4に示す。LiAlO₂とアルミナ繊維から成る一定 量の原料スラリーを連続して走行しているテープ上に供給し, 一定厚さの均質な板に成形するもので、ドクターブレードに よって基板厚さが制御される。成形された基板を約500℃で焼 成すると微細な孔が形成される。その平均細孔直径は約0.1 µm であり,この中に溶融した炭酸塩が保持される。炭酸塩はこ の基板上に配置され、電池内で含浸される。

電池の大容量化を目指して現在セル面積が1m²級の電池の 開発を進めているが、この電池に使用する電解質基板の製造 技術を確立するために、図5に示す大形電解質基板製造法検 討装置を用いて検討している。この装置で幅約1.6 mの薄層電 解質基板を製造する技術をすでに開発し、さらに技術のノ ウハウの蓄積を図っているところである。 図5 大形電解質基板製造法検討装置 大形の電解質基板を連続 的に成形することができ、切断も自動でできるようになっている。

気孔率,比表面積の低下)を抑制することが重要な開発課題で ある。日立製作所ではこの問題を解決するために,Ni多孔質 焼結板に第二元素を添加することを検討している。アノード の厚さ減少に及ぼす第二元素添加の影響について検討した結 果を図6に示す。Al,Mg,La,Zrなどの添加が有効である ことがわかった。なかでも,Mgを添加して酸化すると,Ni粒 子との間で酸化物固溶体が形成され,耐クリープ性および耐 シンタリング性が向上することを明らかにした⁴⁾。現在日立製 作所ではNi多孔質焼結板にMgを含浸させて,アノードを作っ ている。

カソードでは,酸化ニッケルの炭酸塩中への溶出防止と電 気導電性向上が大きな開発課題である。酸化ニッケルに代わ るカソード材料の探索,および焼成条件の検討を進めている ところである。

97

3.2 電 極	電極の製造法としては、電極材料粉末に溶剤とバインダー
アノードにはニッケル多孔質焼結板が、またカソードには	を混合してスラリーを作り、これを心材の両面に添着するス
これを酸化して酸化ニッケルにしたものが一般に用いられて	ラリー添着法を採用している。この方法によって連続製造を
いる。アノードでは、電池の運転温度が約650 ℃と高いこと	可能にした。その製造状況を図7に示す。
から, クリープ(可塑的熱変形)やシンタリング(焼結:体積,	アノード,カソードではそれぞれ(1)式および(2)式で示した

図 6 アノードの厚さ減少に及ぼす第二成分添加の影響 厚さ減 少割合の小さいものほど第二成分元素として有効なものである。

反応が進行する。この反応は電極の細孔表面に炭酸塩の薄い 液膜ができ、反応ガスがこれに溶解したのち、電極表面に達 して生じると言われている^{5),6)}。したがって、電池の性能向上 を図るためには、液膜を形成するための適正な炭酸塩含浸量 を明らかにする必要がある。そのために、電極細孔内に所定

図 8 カソード中のNiとKの分布(電解質占有率:24%) 斜線で示したKの部分が電解質である炭酸塩の液膜である。

量の炭酸塩を含浸させ、そのときの電極性能と炭酸塩の存在

並びの成血と自体とで, ていててい 電磁性船との成血の作品 状況を検討している⁷。

電解質の存在状態は走査形電子顕微鏡(日立製作所製 S2500)とエネルギー分散形X線分析装置(フィリップス社製 PV9900)を組み合わせて観察しており,図8にその画像処理 結果の一例を示す。この方法により,電極中の炭酸塩の存在 状態を知ることが可能になった。例えば,同図の結果から炭 酸塩の液膜厚さ分布を測定すると,厚さ0.7~1.3 µmで全体の 50%を占め,平均約1 µmであることがわかる。

3.3 セパレータ

セパレータは燃料と酸化剤ガスを分離するとともに、アノ ードおよびカソードからの集電とセル間の電気的接続を行う 役目を兼ね備えている。セパレータには高耐食性、高導電性 および高温強度が要求される。特に耐食性に関しては、約 650℃の高温下で溶融炭酸塩、還元性ガス(燃料)および酸化性 ガス(酸化剤)に接するので、材料の探索と開発が重要課題で ある。日立製作所ではこれまでに約30鋼種の耐溶融炭酸塩性 試験を実施し、25Cr・20Ni鋼(SUS310S)が耐食性に優れてい ることを明らかにし、現在セパレータ材として採用している⁸⁾。 ところで、これまでの試験結果からアノード側の腐食が大 きいことがわかっており、純銅および純Niが他の材料に比べ て著しく優れていることをすでに明らかにしている。しかし、 高温強度がステンレス鋼に比較して著しく小さい。そこで高

温強度の大きい材料の開発を目的にして、Cu-Ni合金およびこ れに第三元素を添加したもの、あるいはNiとステンレス鋼の クラッド材などについて検討している。また、耐食性材料の コーティング技術の検討も進めており、アルミコーティング が有効であることを明らかにしている。

図7 電極製造状況 帯状の電極を連続的に製造することができる。

98

図 9 燃料および酸化剤模擬ガス雰囲気下での腐食量 減肉量が 大きいものほど腐食が大きいことを示しており、電圧を印加すると燃料 ガス雰囲気に接するアノード側の腐食が著しく大になる。 の関係について調べ、Cr量が多くなると不動態化電流密度が 小さくなり、耐食性が向上することを明らかにしている。

日立製作所ではセパレータの製造法として,軽量化および 低コスト化に有効であると考えられるシートメタル溶着方式 の開発を進めている。ガス流路となる波板,ガス室とマニホ ールドを形成するフレーム,および燃料と酸化剤の仕切り板 を真空中で一体成形するものであり,後述する1m²級複合大 容量型電池用セパレータの製造技術をほぼ確立した。

3.4 電池冷却技術

MCFCの運転時には、電極および電解質板中での電子、イ オン導電によるジュール熱、および分極抵抗による発熱など のため、電池温度が上昇する。電池温度の上昇は電池反応の 向上には寄与するが、電池構成部材の変形、変質および炭酸 塩の蒸散などを招くため,最適な温度を維持させる温度設計, 冷却技術の開発が必要である。MCFCの冷却方式にはセル個 別に酸化剤ガスで冷却するプロセスガス冷却方式と、数セル を一つのユニットとし、ユニットごとに冷却専用板を設ける 冷却板方式がある。日立製作所では冷却性能、スタック構造 などを考慮し、プロセスガス冷却方式を採用している。この 場合, 電池で発生した熱は主として酸化剤ガスによって電池 外に運び去られる。その際,発熱分布,ガスフローパターン, 流量などによって、電池温度分布は大きく影響される。そこ で各種の条件を想定して、シミュレーションにより有効な温 度設計を行っている。解析結果と実測値を比較した結果の一 例を図10に示す。両者はかなり良い一致を示しており、電池 温度分布解析に有効であることがわかる。MCFC運転温度範 囲を満たすことができる冷却条件をガス利用率、入口ガス温

なお,耐食性の評価には電圧(電位)印加の影響も重要であ るとの知見を得ており,その結果を図9に示す。電圧を印加 しないときには,酸化剤ガス雰囲気下での腐食のほうが燃料 ガス雰囲気下よりも著しく大きいが,電圧印加時には逆に燃 料ガス雰囲気下のほうが大きくなることがわかった。腐食電 位近傍にセパレータ電位がなるためと思われる。この結果か ら,さらに各種ステンレス鋼の不動態化臨界電流密度と腐食

(d)於竹刀へ直反

(b)酸化剤ガス温度

(c) セパレータ温度

99

注:□囲み内数値:測定結果

実線:計算結果

計算条件 セル電圧:0.79 V 電流密度:94 mA/cm² 燃料利用率:40%(H₂:CO₂=8:2) 酸化剤利用率:25%(空気:CO₂=7:3) 雰囲気温度:655℃ 燃料ガス入口温度:606℃

図10 温度分布計算結果と測定値の比較 囲みの実測値と計算値が比較的よく一致している。

度などをパラメータにして検討し、1m²級大容量スタックでの温度均一化方法を明らかにすることができ、現在実証試験を推進中である。

4 スタック技術開発

4.1 小形セルによる長時間運転試験

有効電極面積64~200 cm²の小形単セルを用いて長時間運転 を実施し、電池性能の向上と長寿命化の技術開発を進めてい る。これまでに電池に供給するガス圧力を常圧にしたセルで、 電解質を運転中に補給することなく約8,350時間の運転を達成 し、長寿命化への見通しと開発課題を明らかにすることがで きた。

将来,実用化時にはMCFCの出力密度を高めるため,供給 するガス圧力を高めて運転することが計画されている。そこ で加圧運転時の問題点を明らかにする目的で,高圧連続運転 を実施している¹⁰⁾。小形セルをガス圧力0.29 MPaで昼夜連続 運転したときのセル電圧の経時変化を図11に示す。運転開始 後約300時間まで常圧で調整運転し,その後0.29 MPaに加圧 して運転した。加圧運転開始後3,100時間まではぼ安定した性 能が得られた。その時点で装置のトラブルが発生し,約50 mV の段階的な性能低下があったが,その後再び約5,000時間まで ほぼ安定した性能を示した。この電池は5,600時間の運転を行 い,所定の成果をあげるとともに,加圧運転への見通しを得 ることができた。

図12 中間ヘッダ方式10 kW級スタック スタックの中央にあるの が中間ヘッダであり、上下に16セルずつ積層されている。

考えられる。

モジュールの交換性、各セルへのガス分散性、セル冷却性

4.2 中間ヘッダ方式基本モジュールの開発

これまでに有効電極面積900 cm²および3,600 cm²を持つセル を用いて、1 kW級スタックおよび10 kW級スタックを開発し た^{11),12)}。さらに大容量化を図るためには、電極面積を大きく するとともに、高積層化技術を開発する必要がある。特に、 高積層化のためには、基本モジュールを開発し、必要な発電 量に合わせてこれを積み重ねてスタックにするのが適すると などについて検討した結果,ガスヘッダを境にその上下にセ ルを積層する中間ヘッダ方式を基本モジュールとして採用し た。この構造は日立製作所独自のものである。

この基本モジュールの性能を確認するため,有効電極面積 3,600 cm²を持つセルを16セルずつ中間ヘッダの上下に積層し て10 kW級スタックを製作した。その写真を図12に示す。スタ ックの中心にあるのが中間ヘッダであり,燃料ガスがここか ら各セルに供給されるようになっている。酸化剤ガスはスタ ックの上下に設けられたガスヘッダから供給される。

この中間ヘッダ方式10 kW級スタックで,電流密度150 mA/ cm²発電時,出力12.8 kWを得ることができるとともに,約 2,000時間の運転を達成した。

図11 小形電池の高圧長時間運転特性 供給ガス圧力を常圧から0.29 MPaに加圧すると性能が向上する。階 段的な性能の変化は実験条件の変更や装置のトラブルである。

100

溶融炭酸塩型燃料電池発電装置の開発 579

図13 運転研究用10kW級スタック外観 10kW級スタックは加圧容器中に収納されており、加圧試験ができる構造になっている。

4.3 運転研究用10 kW級スタックの開発

MCFC研究組合の運転研究用として、図12に示したものと

図14 複合大容量型セル構造 同一平面上に単セルが4個配置されて、4倍の面積を持つ新たな単セルを構成する。

同一仕様の中間ヘッダ方式10kW級スタックを製作した。その 外観を図13に示す。スタックは財団法人電力中央研究所(以 下,電力中央研究所と言う。)・横須賀研究所で組み立て,加 圧運転もできるように容器に収納した。発電試験により,10 kWを超える出力が確認されるとともに,各種条件下での特性 把握および加圧運転が実施された。電力中央研究所で約1,700 時間運転後,トラック輸送して日立製作所日立工場に持ち帰 り,さらに約1,380時間の運転を継続して,合計約3,080時間 の運転を達成し,このクラスの長時間運転記録を作ることが できた。

図15 1 m²級複合大容量型セパレータ 同一平面上に配置されるようになっている。

3,000 cm²級単セルが4個

101

4.4 複合大容量型セルの開発

ムーンライト計画では、100 kW級スタックの有効電極面積 を1m²以上にすることが計画されている。この目的を達成す るために、日立製作所は同一面内に3,000 cm²級単セルを4個 並べる構造に決定しており、これを複合大容量型と名づけて いる。

複合大容量型の特徴はセル内温度分布とガス分散性の均一 化,および組立時のハンドリング性の向上などが期待できる ことである。複合大容量型セルのモデルを図14に示す。この 構造に関しては,すでに900 cm²単セルを4個並べた有効電極 面積3,600 cm²複合大容量型5セル積層スタックで試験し,約 2,230時間の発電を達成している。セル面内の温度分布もほぼ

設計どおりの結果を得ることができ, 複合大容量型セル実現 への見通しを得た。

1m²級複合大容量型セパレータを図15に示す。現在,これ を用いた世界初の25kW級スタックを製作して試験中であり, 運転時間500時間の時点で27.8kWの出力を得ている。このス

図16 複合大容量型25 kW級スタック 世界最大の有効電極面積 12,100 cm²を持つセルが22枚積層されている。熱伝対が付いている部分が セル積層体であり、その上に断熱材および締め付け具が設置されている。

タックの写真を図16に示す。世界最大の有効電極面積1万 2,100 cm²を持つ複合大容量型セルを22セル積層している。

5 今後の課題と展望

MCFCのセル要素技術とスタック技術開発の現状について 述べたが、今後さらに電池の高性能・長寿命化、大容量化お よび発電システムの最適化、低コスト化を進めていかなけれ ばならない。

高性能・長寿命化を達成するためには,長期的に安定な材料の探索を進めるとともに,電極や電解質基板の細孔構造の 安定化を図らなければならない。電池の大容量化に関しては, 冷却技術,ガス分散技術およびシール技術を含めた構造の最 適化をさらに図る必要がある。また,発電システムの最適化 に関しては,将来期待されている石炭ガス化と組み合わせた 大容量複合サイクル発電プラントの実現を目指して開発を進 めていきたい。

燃料電池発電システムは、水力、火力、原子力に続く第4 の発電方式として期待されており、日本および米国を中心と して世界的規模で開発が行われている。特にMCFC発電シス テムは高い発電効率が得られることから、大容量火力代替用 あるいはコージェネレーション用として、大きな期待が寄せ られている。まだ多くの技術開発課題が残されているが、着 実にこれらを解決することによって、1990年代後半には実用 化の域に達するものと期待されており、日立製作所は先頭に 立って開発を進めていくが、資金面、人的面に膨大なものを 必要とするため、国、NEDOおよびユーザーの強力な支援を 切望したい。 出されている。日立製作所はこの計画を遂行するため100 kW 級,1,000 kW級の開発へと展開を図り,早期実用化を目指し て鋭意取り組んでいく考えである。

終わりに,この研究開発を進めるにあたって,ご指導いた だいた通商産業省工業技術院殿,新エネルギー・産業技術総 合開発機構殿,溶融炭酸塩型燃料電池発電システム技術研究 組合殿,財団法人電力中央研究所殿および関係各位に対し, 謝意を表す次第である。

参考文献

- H. C. Maru, et al. Fuel Cell Research on Second-Generation Molten-Carbonate Systems, Volume II, Characteristics of Carbonate Melts, I. G. T(1976)
- 2) T. G. Benjamin, et al. : Handbook of Fuel Cell Performance, I. G. T(1980)
- 加原,外:ドクターブレード法電解質板を用いた溶融炭酸塩型燃料電池の特性,'86電気化学秋季大会講演要旨集,131
 (1986)
- 4) 竹内,外:溶融炭酸塩型燃料電池用アノードのシンタリングお

6 結 言

MCFCの開発状況と今後の課題について述べたが、セル要 素技術開発では電池の高性能・長寿命化を目指して基礎研究 を進めており、今後の見通しを得た段階である。スタック技 術開発では25 kW級スタックを試験中で、さらに次のステップ である100 kW級を目指して開発を推進しているところであり、 大容量化の見通しが得られつつある。

ムーンライト計画では1,000 kW級までの展開が明確に打ち

- よびクリープ変形の抑制,マグネシウムの添加効果,日本化学 会誌,1989-No.7,1067(1989)
- 5) C. Y. Yuh, et al. Polarization of the Molten Carbonate Fuel Cell Anode and Cathode, J. Electrochem. Soc., 131, 9, 2062(1984)
- G. Wilemski : Simple Porous Electrode Models for Molten Carbonate Fuel Cells, J. Electrochem. Soc., 130, 1, 117(1983)
- 7) S. Kuroe, et al. : The Effect of Pore Structure on Polarization Characteristics of MCFC Cathodes, 40th ISE Meeting Extended Abstracts, Vol.1, 340(1989)
- 8) 檜山,外:ステンレス鋼の溶融炭酸塩による高温腐食,腐食防 食 '89講演予稿集(1989)
- 9) 小林,外:溶融炭酸塩型燃料電池内の熱,物質伝達,日本機 械学会論文集(B編),56巻,505号,2568(1988)
- 10) 曽根,外:溶融炭酸塩型燃料電池の長期高圧運転特性,平成 元年度電気学会全国大会予稿集,11-71(1989)
- 11) 大塚,外:日立におけるMCFCセル及びスタック開発状況,燃 料電池シンポジウム・東京 '88, 33(1988)
- 12) 大島,外:溶融炭酸塩型燃料電池の開発,日本機械学会論文 集(B編),56巻,507号,3259(1988)

