特集 最新半導体技術

言

U.D.C. 621.375.4.026.049.772.1:546.62'17

高出カハイブリッドIC技術 New Technology for High Power Hybrid IC

電子部品の高機能化,小形化が進む中で,高出力・高周波回路はモノリシックIC化が難しく,従来ハイブリッドIC化が盛んに行われてきた分野である。近年,Al₂O₃(アルミナ)の約10倍の熱伝導度を持つAlN(窒化アルミ)が登場し,Al₂O₃基板技術ではできないような高出力で高密度な回路への応用が期待されている。しかし,AlNの化学的不安定さのために,厚膜の導体,抵抗の形成が難しく,実用化が遅れていた。

今回,AlNに適した導体・抵抗材料の新規開発と,厚膜化のためのプロセス 技術を開発し,出力5Wの超高精細CRTディスプレイ用ビデオアンプ回路に適 用した。今後は厚膜材料の性能向上や高密度配線化技術も急速に進み,次世代 ハイブリッドIC用基板材料として広く使用されるものと思われる。

遠滕怛雄*	Tsuneo Endô
栗原保敏**	Yasutoshi Kurihara
冨田喜久雄***	Kikuo Tomita
佐 瀬 隆 志**	Takashi Sase

電子機器の高機能化・高容量化・小形化の傾向には著しい ものがあり、使用される半導体素子に対する要求も年々厳し くなってきている。中でも高出力・高周波回路の応用製品に ついては、特にモノリシックIC化が難しいとされてきた分野 であり、ハイブリッドIC化することで解決している。しかし、 近年さらに高出力化・小形化の要求やパワー素子と高機能LSI との混載化の要求が強くなり、新しい技術を用いたハイブリ ッドIC化技術が必要となっている。

ハイブリッドICに使用されている代表的な高熱伝導セラミ ックスの特性を表1に示す。Al₂O₃は電気絶縁性,耐熱性,化 学的安定性などに優れた材料であることから,信頼性の高い

表 | 高熱伝導セラミック基板の特性 熱伝導度だけみたらBeO, SiCのほうが優れている。ハイブリッドIC用基板として使用するためには 各種の膜形成ができ、しかも安価である必要がある。この条件を満たす ものとして現在AINが注目されている。

	特性	項目		単位	AIN	AI_2O_3	BeO	SiC
熱	伝	導	率	W/mK	160	20	260	270
熱	膨	張	率	$10^{-6} K^{-1}$	4.4	6.5	7.5	3.7
比	打	氏	抗	Ω・m	> 1012	$> 10^{12}$	> 1 012	> 1011
誘	電 率	≅(IN	IHz)		9.2	8.1	6.7	45
誘官	電正招	妾(I N	IHz)	$ imes$ 1 0 $^{-4}$	I~I0	3	4	50
絶	縁	耐	圧	10 ⁶ V/m	15	15	10	0.7
ヤ	ン	グ	率	MPa	330,000	370,000	320,000	400,000
曲	げ	強	度	MPa	400	300	240	450

膜形成と半導体素子の搭載が可能であり、ハイブリッドIC用 基板材料として古くから使用されてきた。しかし、さらに高 出力化をしたり、素子を小形にするにはAl₂O₃では十分な放熱 構造をとることができない。このような次世代の高出力ハイ ブリッドIC用の基板材料として注目されているのがAlNであ る。AlNはAl₂O₃よりも一けた大きな熱伝導度を持ち、また熱 膨張率もSi(シリコン)に近いことから、パワー素子を搭載する ためには最適な材料と言える。以下に、最近開発したAlN用 新材料・新プロセス技術と、これを応用した高出力ハイブリ ッドICについて述べる。

2 AIN上への膜形成技術

AINをAl₂O₃と同じように、ハイブリッドIC用の基板として 使いこなすには、高精度の抵抗形成と信頼性の高い半導体搭 載とが、安価なプロセスコストで実現できることが必要であ る。AINへの膜形成法としては、印刷プロセスによる厚膜法、 蒸着プロセスによる薄膜法、タングステンの同時焼成による グリーンシート法等々が報告されている¹⁾。中でも抵抗形成が 容易であり、また量産性の面からもいちばん優れている厚膜 法を採用し開発を進めることにした。

また、AlNはAl₂O₃に比べて化学的安定性が劣るために、酸化 性雰囲気中では厚膜ペースト中のガラスフリットと容易に反 応をしてしまう。このために、十分な膜性能を得ることが難 しく、AlNとの適合性の良い厚膜材料の開発も必要となった。

101

* 日立製作所 高崎工場 ** 日立製作所 日立研究所 *** 日立製作所 大みか工場

1302 日立評論 VOL. 72 No. 12(1990-12)

2.1 配線層の形成

Al₂O₃用の配線材料としては,信頼性の高いPd-Ag(パラジ ウム-銀)系のペーストが最も広く使用されている。このペー ストは導電成分となるPd-Agの微粉末と,基板との接着性を 持たせるためのガラスフリットから成るものである。

このペースト材料を用いた場合の導体膜の断面部走査電子 顕微鏡像を図1に示す。 Al_2O_3 上に形成した場合は同図(a)のよ うに、溶融したガラスが Al_2O_3 の粒界に沿って深く浸入してお り、良好な接着状態となっている。一方、同図(b)はAlN基板 上に形成した場合であり、溶融したガラスは基板内部に浸入 していかず、導体と基板の界面に厚い滞留ガラス層を形成す る。この滞留ガラス層は、AlNと反応して脆い界面層となる ために接着強度は強くならない²⁾。

この点をもう少し詳しく調べるために,ガラスフリットの 軟化点を変えてみた結果を図2に示す。軟化点が高いほどガ ラスの沈降が少なく,滞留層の厚さを薄くすることができる。 また,接着強度は500℃で最も高い値を示し,軟化点が高くて も強度は低下する。これはガラスの軟化に先行して金属粒子 の焼結が進むため,溶融ガラスが基板側に流動せず,接着担

図2 ガラスフリットの軟化点と導体引張強度 500℃前後の軟化 点を持つガラスフリットを使用することで、導体ペーストの接着力は向 上する。

体としての役割を十分果たさないからである。

これらの結果から, 接着強度の優れた配線層を得るために は焼成過程での適度なガラスの流動性を持たせることが必要 であり,約500℃の軟化点を持つガラスフリットを用いた導体 ペーストの開発を行った。このようにして得られたペースト の接着力の信頼性は,図3に示すように良好な結果が得られ, Al₂O₃基板とほぼ同等,また市販のAlN用導体ペーストに比べ 大幅な改善が確認された。

2.2 抵抗体の形成

抵抗体の形成に対してはさらに多岐にわたる検討が必要で あり,抵抗温度特性の制御技術や,トリミングによる高精度 化技術も加味した技術開発が必要である。

抵抗ペーストは導電性のRuO₂(酸化ルテニウム)粉末とガラ スフリットを混合したものであり、ガラスフリットの量を増 やすほどシート抵抗は高くなる。しかし、多量のPbO(酸化鉛) を含む低軟化点のガラスフリットを用いると、AlNとガラス が激しく反応して遊離した窒素による発泡や導電粒子の凝縮 が生じ、再現性が良く信頼性も高い抵抗体を得ることができ ない。また抵抗膜とAlNの熱膨張係数を合わせ込むことも必 要であり、PbOの含有量が少なく、低軟化点、低熱膨張率の ガラスフリットの開発と、それを用いた抵抗ペーストの開発 を行った³⁾。

図 | 導体形成試料の断面部走査電子顕微鏡像 AINはAl₂O₃に比べて緻(ち)密な焼結体となるため,厚膜中のガラス分が基板内に浸透していか ず,界面に滞留ガラス層を形成する。

102

図3 開発導体ペーストの引張強度の推移 温度サイクル試験のほかに150℃高温放置試験も行っているが,開発ペーストに対しては,いずれも良好な強度結果が得られている。

2.3 レーザトリミング

このようにして得られた抵抗体も,初期値が±20~±30% にばらついており,高精度の抵抗を得るためにはレーザトリ ミングによって調整することが必要である。レーザ光の照射 によって抵抗体の一部を瞬時に蒸気化させるが,その際に基 板表面にもレーザ光が当たる。そのために過度のレーザ出力 を与えた場合には,AINが分解をし,遊離AIが生成されて抵 抗切断部の絶縁抵抗が低下する。一方,レーザ出力が小さ過 ぎると抵抗膜が完全に切れず,この場合にも切断部の絶縁抵 抗が低下する⁴。

これらの結果から、レーザ出力1Wでトリミングをするこ とにより±1%の精度をクリアする抵抗体の形成が可能とな った。

3 AIN厚膜基板の応用

3.1 ビデオアンプ回路への適用例

超高精細カラーCRTディスプレイ用ビデオアンプ回路への 適用例について説明をする。CRTディスプレイ(図5)は、 CAD/CAM/CAE, EWSなどへの応用が広がり、これに対応

開発した抵抗ペーストの熱ストレスによる抵抗値の安定性 を図4に示す。低熱膨張ガラスを多く含む高抵抗ペーストの 熱安定性は良好な結果が得られたが、熱膨張係数の大きな RuO₂を多く含む低抵抗ペーストの熱安定性は良くない。これ はAINとの熱膨張の差により、抵抗膜中にクラックが発生し やすいためであり、低熱膨張率のオーバーコートガラスによ って抵抗膜を保護することにより、抵抗値の安定化を行った。 するためにはよりきめの細かい高画質の性能が望まれてきた。 現在高精細タイプでは,主に解像度1,280×1,024,映像帯域 100 MHzのものが使用されている。これに使用しているハイ ブリッドICは,Al₂O₃基板の上に消費電力3.2 Wの駆動用 MOS FET(電界効果形トランジスタ)チップを搭載したもの である。

この応用分野はさらに高画質化の要求が強く,解像度 2,024×2,024を持つ超高精細タイプのディスプレイの開発が 必要となった。この解像度に対応するためには,映像帯域は

図 4 抵抗ペーストの温度サイクルによる抵抗変化率 抵抗変動 を抑えるためには、低膨張率のガラスによって抵抗をコーティングする のが有効である。

図 5 超高精細カラーCRTディスプレイの外観 HMシリーズは多 種多様なニーズにこたえるため、この発表によるハイブリッドIC技術など を駆使した幅広いラインアップ化を図っている。

103

1304 日立評論 VOL. 72 No. 12(1990-12)

250 MHzに、またMOS FETの消費電力は5 Wが必要となる。

3.2 素子の放熱構造

従来形の高出力ハイブリッドICは、パワー素子で発生した 熱を銅ヒートシンク、Al₂O₃基板を経由して銅ヘッダで逃がす 放熱構造となっている(図6)。Al₂O₃基板は、パワー素子の絶 縁やプリアンプ回路などの周辺回路を搭載するために必要な ものである。高精細ディスプレイ用ハイブリッドICにこの構 造を適用した場合、熱抵抗は*θ_{j-c}*=8.8 K/Wが得られている。 しかし、さらに高出力化の必要な超高精細CRTディスプレ イ用のハイブリッドICでは、5 K/W以下の熱抵抗が必要とな ったためこの構造では対応できない。この原因はAl₂O₃基板で の熱抵抗が5.7 K/Wと大きなウエートを占めているためであ り、全体の熱抵抗を大きく下げるためには、熱伝導度の高い セラミック基板に変えるのが有効である。そこでAl₂O₃に代わ る材料としてAINを採用し、図7、8に示す放熱構造にする

ことで熱抵抗を $\theta_{j-c}=2.5 \text{ K/W}$ に下げることができた。

また、従来形よりもシンプルな素子構造となったため、MOS FETのボンディング長さや回路の配線長を短く設計できるようになり、放熱特性だけでなく、高周波特性に対しても優れ

図 8 超高精細CRT用ハイブリッドICの外観 軽量化のため,放熱 板の材質をAIとし、またボードへの搭載がしやすいような構造にしてある。

たハイブリッドICを開発することができた。

図 6 従来形ハイブリッドICの断面構造 Al₂O₃基板の熱抵抗が大き いため,この構造ではMOS FET(電界効果トランジスタ)に5Wの消費電 力をかけられない。

4 結 言

AINが高熱伝導性材料として登場してからまだ数年しか経 過していない。しかし、今までハイブリッドICではカバーし 切れなかった新分野に応用できるのではないか、との期待か ら大きく注目されている。しかし、期待の大きさに反して実 用化は遅れており、実際の製品に適用された事例がなかった。 これは、AINのセラミックスとしての歴史が浅いために、エ レクトロニクス用材料として使いこなしていくための周辺技 術が整っていなかったためである。

今回,ハイブリッドIC化の隘(あい)路となっていた導体形 成,抵抗形成,抵抗調整に関する材料およびプロセス技術の 開発を行った。その結果,Al₂O₃系厚膜基板と同等の性能と信 頼性が確認でき,超高精細CRTディスプレイ用ハイブリッド ICに適用した。

今後はさらに厚膜材料の性能向上,高密度配線技術などに ついて顧客,メーカーなどとの協調した技術開発を進め,次 世代ハイブリッドICへの適用を拡大していく予定である。

参考文献

- 1) 倉本,外:AlN特集号,HYBRIDS, Vol.6, No.2, 16~46 (1990)
- 2) Kurihara, et al. Ag-Pd Thick Film Conductor for AlN Ceramics, IEEE Trans. C. H. M. T., Vol.13, No.2,

104

- $306 \sim 312(1990)$
- 3) 栗原,外:AINセラミックス用厚膜抵抗体,第3回マイクロエレクトロニクスシンポジウム予稿集,133~136(1989)
 4) 栗原,外:AINセラミックス上の厚膜抵抗体のレーザトリミング,第3回マイクロエレクトロニクスシンポジウム予稿集,137~140(1989)