放射性廃棄物処理·処分技術

Radioactive Waste Treatment and Disposal Techniques

泉田龍男*	Tatsuo Izumida	
吉田富治**	Tomiharu Yoshida	
平野幹雄**	Mikio Hirano	
菊池 恂***	Makoto Kikuchi	

放射性廃棄物処理・処分技術の全体概要 各種廃棄物を最大限に減容し,安全かつ安定な固化体として処分する。

日立製作所では,原子力発電所からの低レベル放 射性廃棄物をできるだけコンパクトに処理し,かつ 安全に処分可能にすることを基本方針として技術開 発を進めている(上図参照)。

コンパクト化技術としては,液体廃棄物を最大限 減容する粉末ペレット化技術を,また原子炉内機器 である使用済みチャネルボックス,制御棒の細断減 容技術をそれぞれ開発し実用化した。廃棄物を安全 に処分可能とする廃棄物固化技術としては,長期安 定性に優れた無機固化材であるセメントガラスを開 発した。このセメントガラスはペレットの固化材と して実用化し,さらに樹脂などのスラッジ類,不燃 性雑固体等への適用を進めている。

また,廃棄物固化体の強度,表面線量当量率,放 射能量などを非破壊で自動検査する搬出管理システ ムを開発し実用化した。

43

* 日立製作所 日立工場 工学博士 ** 日立製作所 日立工場 *** 日立製作所 エネルギー研究所 理学博士

1 はじめに

原子力発電所では,気体状,液体状,固体状の各廃棄 物に対してそれらの種類,性状に応じて適切な処理を行 っている。日立製作所では,最近の放射性廃棄物埋設セ ンターへの処分を考慮して,下記の基本方針に基づいて 技術開発を進めている。

(1) 発生廃棄物の最大限の減容

(2) 廃棄物の安全で安定な固化

(3) 廃棄物処理システムの簡素化

(4) 設備の高信頼化

廃棄物の減容は,保管および処分コストを軽減するだ けでなく,管理上からも必要不可欠な技術であり,また, 安定に固化することは,処分時の安全性を保証する最重 要技術と言える。システムの簡素化はコスト軽減に,設 備の高信頼化は安全性向上にそれぞれ不可欠である。 れぞれ主成分であり、このプロセスではこれらを遠心薄 膜乾燥機で乾燥粉体化する。乾燥粉体は、さらに造粒機 でアーモンド状または円筒状のペレットに圧縮成型す る。この乾燥・造粒は、従来の濃縮廃液を液体のままで 固化するセメント固化法と比較すると約¹/₈(BWR濃縮 廃液の場合)の減容効果が得られる。この乾燥・造粒技 術は、濃縮廃液だけでなく、樹脂スラッジにも適用でき、 また焼却灰についても造粒できることを確認している。 乾燥・造粒によって大幅に減容されたペレットは、後述 する無機固化材のセメントガラスによって固化できる。

これらの乾燥・造粒システムは3発電所で,乾燥シス テムは3発電所でそれぞれ運転中である。

2.2 チャネルボックス,制御棒の減容

BWR原子力発電所で固体廃棄物として発生するFCB (燃料チャネルボックス)やCR(制御棒)は,照射によって 高線量となっているため,原子炉建屋の使用済み燃料貯

ここでは、これらの基本方針に基づいて開発実用化した を種技術について述べる。

2 廃棄物の最大限の減容¹⁾

44

2.1 液体廃棄物の乾燥・造粒システム

発電所からの液体廃棄物の主なものは,廃液を高濃縮 した濃縮廃液である。これを最大限に減容可能とする乾 燥・造粒システムを開発し実用化している。

主要なプロセスを図1に示す。濃縮廃液は,BWR(沸 騰水型原子炉)では硫酸ナトリウムや塩化ナトリウムが, PWR(加圧水型原子炉)ではほう酸ナトリウムの塩がそ 蔵プールまたはサイトバンカ設備の貯蔵プールで水中保 管する。しかし、FCBやCRは、その断面形状がおのおの 長方形や十字形であるため、貯蔵プールでかなりの貯蔵 スペースを占有するので、炉の運転年数とともにその貯 蔵容量が増大していく。そこで日立製作所では、貯蔵プ ールの有効利用を図る目的から水中プラズマ切断技術を 採用したFCBとCRの減容装置を開発し実用化した。

2.2.1 FCB減容設備

FCB減容装置は,外形140 mm角×長さ4,000 mm,板 厚 2 ~ 3 mm程度のFCBを縦方向にL字形に切断する装 置である。この装置では,照射によるFCBの機械的,電

図 | 放射性廃棄物の処理フロー 日立製作所独自の乾燥機,造粒機,複合コンクリート容器およびセメントガラスにより,廃棄物の大幅減容を可能としている。

45

気的物性変化に影響を受けない安定した切断性能が得ら れるように、非移行式の水中プラズマ切断法を採用し た。この装置の導入によってFCBの必要貯蔵スペース は原形貯蔵に比べて $\frac{1}{4}$ から $\frac{1}{5}$ に減容できる。この装置の 概要を**表1**に示す。

2.2.2 CR減容装置

CR減容装置は、外形250 mm角×長さ4,400 mm、板厚 最大25 mm程度のCRを、下部のV/L(ベロシティリミッ タ)を切断した後,縦方向にL字形に切断する装置である。この装置では,FCBに比べて形状が複雑なので,厚 肉のCRを安定して切断するため半移行式の水中プラズ マ切断法を開発し,採用した。この装置の導入によって CRの必要貯蔵スペースは原形貯蔵に比べて¹/₃から¹/₄に 減容できる。この装置の概要を先の**表1**に示す。

高線量の固体廃棄物であるFCBやCRの最終的な処分 方法が未定であり,発電所での暫定的な貯蔵が当分必要

表 I FCBとCR減容装置の概要 FCBとCRは、最大限減容可能となるように、形状に応じて切断を実施している。

and so it is not	2 m / /			
4	+	型 式	非移行式水中プラズマ切断	半移行式水中プラズマ切断
	要	概略寸法	幅1 m×奥行き1 m×高さ12 m	幅1.5 m×奥行き2.5 m×高さ9 m
	仕	切断速度	~ 1,000 mm/min	~ 160 mm/min
	様	減容効率	$\frac{1}{4} \sim \frac{1}{5}$	$\frac{1}{3} \sim \frac{1}{4}$

·注:略語説明 V/L(ベロシティリミッタ), FCB(燃料チャネルボックス), CR(制御棒)

と予想される現状では,FCBとCRを減容して効率よく 貯蔵することは発電プラントの運用上重要な課題であ る。この装置は,現在複数の発電所に導入し,貯蔵プー ルの効率的運用に供している。

3 廃棄物の安定固化²⁾

3.1 ペレットセメントガラス固化

日立製作所で独自に開発したセメントガラス固化法で は,粉末状のセメントガラス固化材と添加水とを所定量(水 とセメントガラス比=0.3)混練した後,すでにペレットが 充てんされている固化容器内にセメントガラスペースト を上方から注入するだけで安定な固化体が作製できる。 固化プロセスを先の図1に示す。粘性が小さく流動性 が良いために,注入するだけでペレット間げきに浸透 し,ボイドのない均一な固化体を作製できる。 従来実用化されてきた各種固化法は,いずれも廃棄物

(a) 雑固体への注入状況

と固化材との混練操作を必要とするのに対し,セメント ガラス固化法は廃棄物を充てんした容器内にペーストを 注入する方式のため,設備が簡素化でき,また運転保守 が容易となる特長を持っている。

これらの特長を生かしたセメントガラス固化システムは,乾燥造粒システムとともに1発電所で運転中であり,1発電所で建設中である。

3.2 不燃性雑固体への応用

セメントガラスは金属廃材など不燃性雑固体の固化処 理にも適用でき、以下の特長を持つ。

(1) 良好な注入性

減容性を高めるために,雑固体は数百トンの高圧でプレスした後,ドラム缶内に固化処理する(図2)。セメントに比べて粘性が約⁴/₄と低いセメントガラスは,重力だけでプレス体の中心部まで注入が可能なため,真空注入装置などの特殊機器が不要である。

(2) 廃棄物との反応防止

46

アルミニウムが含まれる雑固体をセメントで固化する と、セメント中のアルカリ分とアルミニウムが反応して 水素ガスが発生する。このため、固化体にき裂やボイド を生じる場合がある。しかし、セメントガラスはアルミ ニウムとの反応性が低いため、固化体の健全性が損なわ れることはない。 (b) 高圧プレス体の充てん状況

図2 セメントガラスの雑固体, プレス体への適用 セメントガラスは高流動性なため, 雑固体, 高圧プレス体なども容易に注入固化できる。

を進めている。

3.3 廃スラッジへの応用³⁾

炉水浄化系や燃料プール浄化系から発生する樹脂など の廃スラッジ類は,放射能濃度が高いため,現在は発電 所内のタンクに貯蔵している。このような廃スラッジに 対しても,セメントガラスで安全に固化処理できる見通 しを得た。

(1) 運転保守の容易性

放射能濃度の高い廃スラッジに対しては,運転保守の 容易性を考慮して,脱水した廃スラッジをドラム缶内で セメントガラスと直接混合し固化する。このため,シス テムを簡素化できるだけでなく,主要機器は非汚染機器 として取り扱える。

固化処理した雑固体に対しては,平成10年ごろから, 低レベル廃棄物埋設センターで埋設することが予定され ている。これに対応するため,200ℓ固化体が作製可能な 実用規模パイロットプラントを用いて,各種の実証試験 (2) 減容性の向上

従来のセメントでは廃スラッジの充てん量を増すと固 化体にき裂が発生する。この原因はスラッジの膨潤性に 起因する。そこで,膨潤の抑制が可能な炭素繊維強化セメ

放射性廃棄物処理・処分技術 749

図3 廃スラッジ固化体の耐水性比較(上:従来セメント, 下:セメントガラス) 炭素繊維で強化したセメントガラスを 用いることにより,固化体を水に浸漬したときのき裂発生を防止で きる。

ントガラスを開発した。これよってき裂の発生を防止で き(図3), 減容性を従来セメントの約3倍に向上できた。

表2 廃スラッジ固化体の物性試験結果 従来セメントの 3倍量の樹脂を固化しても、健全な固化体物性を示す。

項目	規模**	試験結果
圧 縮 強 度	0	7 MPa以上
密 度	O	1.5~1.7
長期耐水性	Ø	2 年間水浸漬後も強度低下, き裂の発生なし
樹脂充てん量	\bigcirc	55 kg—乾燥樹脂/200ℓ
耐放射線性* ●圧縮強度	0	強度低下なし
●分 配 係 数		濃縮廃液固化体の5倍以上 (C-14, Sr-90, I-129, Cs-137ほか)
●有害ガス		なし

注:* 耐放射線性;10⁷rad照射後 **規模;○(小規模固化体),◎(実規模固化体)

棄体)の形で,平成4年度から埋設センターで埋設するこ とになっているが、廃棄体が技術基準に適合しているこ とを確認する必要がある。このニーズにこたえるために, ドラム缶自動検査装置を中心とした廃棄体搬出管理シス テムを開発し実用化した。

(3) 長期耐久性の実証

4

パイロットプラントを用いて実規模固化試験を実施す るとともに,低レベル廃棄物埋設センターでの埋設を前 提とした固化体の長期耐久性実証試験を進めている。主 要な試験結果を表2にまとめて示す。 廃スラッジの放射 能濃度の高さを考慮して、各種の耐放射線性試験を積極 的に進めている。これにより, 廃スラッジ固化体は, す でに埋設の決定している濃縮廃液などのセメント均質固 化体と同等の安全性があることを確認した。

4.1 システムの概要と特徴

搬出管理システムは, 廃棄体の搬送設備と検査設備で 構成している。その一例を図4に示す。固化体はモノレ ールによって各検査装置間を移動する方式であり、連続 的な検査を可能としている。検査終了後の廃棄体はコン

図4 搬出管理システム全体図 モノレール方式で 固化体を移動し,表面汚染密度,放射能量,固化体強度など

47

テナに収納する。検査装置の能力は1日に約30本である。 主な検査項目は、(1)外観・質量・表面汚染密度検査, (2) 線量当量率・放射能測定, (3) 一軸圧縮強度測定である。

4.2 検査装置の概要

検査装置の原理と機能について以下に述べる。

(1) 外観·質量·表面汚染密度検査装置

この装置では、外観は3台のITV(工業用テレビジョ ン)カメラで上面,側面,底面を目視観察し,底面は画像 処理によってJIS刻印の識別を容易にする機能を持たせ ている。廃棄体質量は,廃棄体支持部のロードセルによ って測定する。表面汚染密度検査は、スミア法によって 廃棄体の上面,側面,底部を同時に拭き取り検査する。 (2) 線量当量率·放射能測定装置⁴⁾

廃棄体中にある放射性核種濃度を外部から高精度で測 定するためには,廃棄体中の自己遮へいを補正する必要 がある。日立製作所では,自己遮へいの程度に応じて発

生するコンプトン散乱線を利用した独自のスペクトル補 正方式を開発した。原理と装置構成を図5に示す。この 方式は, 放射線のスペクトル解析によってソフト的に処 理するため、装置構成が簡易で、また雑固体のように放 射能や密度の偏在が大きい場合でも精度よく測定できる。 (3) 一軸圧縮強度測定装置

一軸圧縮強度は、セメント固化体などの均質な廃棄体 に適用可能なもので,固化体中の超音波伝搬速度の測定 から動弾性係数を求め,これと固化体の一軸圧縮強度の 相関関係から測定する。

4.3 検査装置の実証試験と実機適用状況

以上述べた各種検査装置は,実際の廃棄体での実証試 験を完了し、それぞれ良好な性能を確認している。この 実証技術を基にした搬出管理システムは、1発電所に納 入済みであり、2発電所向けに製作中である。

おわりに 5

以上述べたように、日立製作所では原子力発電所から

図5 スペクトル補正法の概要 廃棄物自身による遮へい効 果をスペクトルから補正する。このため測定が簡易で, 廃棄物の形 状, 性状に幅広く対応できる。

発生する放射性廃棄物の最大減容技術、長期安定で簡易 な無機固化(セメントガラス)技術, 信頼性の高い固化体 搬出管理システムなどを開発し実用化している。これら の技術は、廃棄物を最大限にコンパクトに処理し、かつ 安全に処分可能とすることを基本ポリシーとして開発を 進めてきたもので、今後も、より小型化した信頼性の高 い放射性廃棄物処理設備の開発を進めていく予定であ る。

参考文献

48

- 菊池,外:放射性廃棄物の無機固化処理技術,原子力工 1) 業, 34, 8, 31~39(昭63-8)
- 隅谷,外:放射性廃棄物のセメントガラス固化技術,火力 2)原子力発電, 40, 4, 53~60(平1-4) M. Matsuda, et al.: "New Cement Solidification 3) Technique of Ion Exchange Resin to Improve Resin Content and Leachability", Proc. 1991 Int. Waste

Management Conf., Vol. 1, 247(1991)

- 4) S. Kawasaki, et al. : "Technique for Radioactivity

Measurement in Drum Package Waste by Using Scattered Gamma-Rays", J. Nuc. Sci. Tec., Vol.27, 9, $783 \sim 789(1990)$