機械系CAEにおけるスーパーコンピューティング

Supercomputing in Mechanical Computer-Aided-Engineering

千葉矩正*	Norimasa Chiba
池川昌弘*	Masahiro Ikegawa
平澤茂樹*	Shigeki Hirasawa
江澤良孝*	Yoshitaka Ezawa
小久保邦雄**	Kunio Kokubo

注:略語説明 CAE (Computer Aided Engineering)

シミュレーションによる製品開発支援機械工学のさまざまな分野での解析技術が機械系CAEとして再統合され、製品開発に役立てられている。

新製品開発での開発費用の削減と開発期間の短縮 には、事前に技術的検討課題の摘出と対策を行い、 試作・試験を可能なかぎり減らすことが有効である。 機械系CAE(Computer Aided Engineering)は、 こうした製品開発の効率化・設計の合理化に、さら に最適設計に用いられている。熱流体解析や構造振 動解析など機械系の基盤解析技術がコンピュータシ ミュレーション技術として統合・再編成され、解析

ジュアライゼーション技術と合わせて,機械系の CAEシステムを構成している。

解析アルゴリズムとコンピュータハードウェアの 急速な進歩により,シミュレーションの対象は部品 単位の解析から製品全体の解析へ,また扱う現象も 流体,熱,構造,音響などのそれぞれ独立した単一 の現象から,これらの複数の現象が関連した現象を 含む方向へと移りつつある。

対象の幾何モデリング技術、およびコンピュータビ

* 日立製作所 機械研究所 工学博士 ** 工学院大学 機械工学科 工学博士

1 はじめに

熱流体解析,構造振動解析などの物理現象の解析を行 う機械系CAE(Computer Aided Engineering)は,製品 設計・試作の種々のフェーズで技術的検討のための不可 欠のツールとなっている。従来,CAEでは部品単位の単 一現象の解析を扱うのが一般的であった。解析アルゴリ ズムとコンピュータハードウェアの進歩を背景に,最近 は製品全体の,しかも複数の現象が関連した現象を解析 する要求が多くなってきている。ここでは,こうした複 合現象の解析例を中心に,機械系CAEの最近の進歩につ いて述べる。

2 高速移動物体周りの気流シミュレーションと ラージ エディ シミュレーションによる流体 音響解析

場合の気流解析では,解析領域の形状が時々刻々変化す るために、従来の解析法ではそれに応じてメッシュを再 分割する必要があり、解析がきわめて困難であった。そ のために、形状の複雑な車両周りは有限要素法を用いて 解析し,それ以外は計算速度の大きい差分法を用いて解 析する複合解析技術を開発した¹⁾。これは, 差分法によっ て分割された流路メッシュに、移動物体近傍の有限要素 メッシュをオーバーラップさせて配置し、有限要素法メ ッシュによる解析結果と差分法メッシュによる解析結果 とを相互に受け渡ししながら解析を進める方法である。 高速車両がトンネルに突入する場合の解析結果を図1(a) に示す。車両のトンネル突入速度は270 km/hである。車 両がトンネルに突入直後から急激に圧力が上昇している ことがわかる。二つの車両がトンネル内ですれ違う場合 の気流の解析結果を同図(b)に示す。車両がすれ違う場合 は逆に急激な圧力の低下が起こっており、その後徐々に

新幹線車両の高速化に伴い,車両がトンネルに突入し たり,すれ違ったりする場合の気流シミュレーションが, 車両の強度設計や乗り心地に関連して重要な課題となっ てきている。同時に,パンタグラフなどから発生する流 体騒音の低減も,周囲環境への配慮という観点から重要 な問題のひとつとなっている。このような問題を解析す るために,実験と並行して,移動物体周りの気流や気流 から発生する音(流体音)の数値シミュレーション技術の 開発を行っている。

2.1 高速車両周りの気流シミュレーション

高速車両がトンネルに突入したり、すれ違ったりする

圧力は回復している。これらの結果は,財団法人鉄道総 合技術研究所などで得られている実験データ²に一致し ている。このような気流のシミュレーションは,車体の 強度設計上必要な,車体に作用する空気力の評価に利用 されている。

2.2 ラージ エディ シミュレーションによる流体音響 解析

流体音は,流れの中の渦から発生する密度・圧力の微 小な変動である。したがって,理論的には,圧縮性を考 慮した非定常ナビエ・ストークス方程式を解いて流体音 を求めることが可能である。しかし,一般にマッハ数の

(a) 車両のトンネル突入時

 $\mathbf{58}$

(b) 車両すれ違い時

図Ⅰ 複合メッシュを用いた高速車両周りの気流解析 色は圧力を表し,青色→緑色→黄色→赤色の順に高圧を表す。トンネル突入時に は圧力が上昇し,逆にすれ違い時には急激な圧力低下が起こることがわかる。

機械系CAEにおけるスーパーコンピューティング 373

(a) 流れの構造

図2 円柱から発生する流体音の解析 (a) カルマン渦と呼ばれる大規模渦に, 微 小な乱流渦が重ね合わさった複雑な乱流渦 の構造が認められる。(b) 低周波数域の鋭 いピークは, (a)のカルマン渦によるもので ある。

小さい流れ場では, 音の波長スケールが渦の長さスケー ルよりもはるかに大きくなるため, 流体音を圧縮性ナビ エ・ストークス方程式から直接計算するためには非常に 多くの空間メッシュが必要となる。そこでまず, 音源領 域での渦の挙動をラージ エディ シミュレーションによ って求め, 次いで流体音の伝搬を計算するというアプロ ーチをとる³⁾。

このようなアプローチによって,流れの中に置かれた 円柱から発生する流体音を解析した結果を図2に示す。 円柱近傍の乱流渦の構造を計算したものを同図(a)に示 す。カルマン渦と呼ばれる大規模な乱流渦とともに微小 な乱流渦が見られる。音圧スペクトルの計算値を実験値 と比較した結果を同図(b)に示す。低周波数域に見られる 鋭いピークは,前述のカルマン渦によるものである。解 析結果は,3,000 Hz以下の周波数域では5 dB以内の差で に固体の溶融,液体の沸騰などの相変化がある。多くの 伝熱問題では、それらのいくつかが組み合わさり、さら に流れや熱変形、化学反応などが同時に関連している。 したがって、伝熱現象の解析には、これらの複合現象を シミュレーションする必要がある。有限要素法の熱流体 計算プログラムをベースにして、モンテカルロ法による 輻射計算など他の計算プログラムとの入出力データファ イルを共通化し複合解析を行った。

エアコンディショナによる空気暖房と電気カーペット による輻射暖房を併用した居室環境で、人間が感じる温 度をシミュレーションしたものを図3に示す。体感温度 は、デンマーク工科大学から提案されている計算式⁴⁾を 用い、空気流速、空気温度、輻射温度、着衣量、代謝量 などの関数として計算する。同図で黄色の部分が快適と 感じる温度を示し、エアコンディショナと窓の近くを除 いて室内全域がほぼ快適な温度であることがわかる。快 適性のよい空調システムの開発に利用している。 光ディスク(相変化記録型)の内部の熱変形をシミュレ ーションした結果を図4に示す⁵⁾。光ディスクはコンピ

59

実験値と一致している。

3 伝熱・流れ・変形の複合解析

伝熱の形態として、熱伝導・対流・輻(ふく)射、さら

図3 居室環境の快適性評価 エアコンディショナによる空 気暖房と電気カーペットによる輻(ふく)射暖房を併用した場合の 体感温度を計算した。

рининика реконструкций реконстру

図5 ミクロコンタクト接触解析例 ミクロな表面粗さを考慮した解析であり、真実接触点近傍(ミクロな視点で見たときの接触部)で応力が高くなっている様子がわかる。

ュータ出力などの膨大な情報を記憶する装置として使わ れている。記録原理は、回転するディスクの記録膜に強 いパワーのレーザ照射によって記録膜を溶融させると非 晶質化し、一方、弱いパワーのレーザ照射によって融点 以下に加熱すると結晶化することを利用するものであ る。ディスクの同じ位置に書き換えを繰り返すと、記録 膜がわずかずつ流動し変形するので、書き換え可能な回 数が制約されるという性質がある。同図は長さ1µmの微 小な領域に、レーザを10⁻⁷秒瞬間照射した場合のシミュ レーション結果であり、分子オーダの変形量を評価し、 光ディスクの信頼性を向上させるのに用いている。 の寿命を決める場合が多い。コンピュータの外部記憶装 置に使われているスパッタディスクは、その代表的な例

4 接触変形解析

60

4.1 境界要素法による接触応力解析

機械部品では、接触部、摺(しゅう)動部の特性が製品

と言える。スパッタディスクは、アルミ基板にNi-P下地 層、Cr中間層、磁性層、保護層などが積層されている。 これらの多層薄膜の厚さは、数十ミクロンから数ナノメ ートルのオーダであり、基板の厚さ1.9 mmに比べてけ た違いに薄い。このため、基板を有限要素法でモデル化 することは困難である。

これに対し境界要素法(Boundary Element Method) は,解析対象の境界部だけを要素分割すればよく,この ような解析に向いている⁶⁾。

解析例を図5に示す。垂直方向の応力を表示している。 接触面は表面粗さを想定した凹凸を付けた。ミクロな接 触部を真実接触点と言い,その部分で応力が高くなって いる様子がわかる。

(b)熱変形量分布(変形量を300倍に拡大して示す。)

図 4 光ディスクの情報記録時の熱変形評価 レーザを短時間(10⁻⁷秒)照射したときに,溶融を伴いながら生じる温度分布(a)と熱変形量 分布(b)を計算した。 有限要素法で接触点近傍の値を正確に計算するには, 接触点近傍での要素分割を領域内部までかなり細かくす る必要があり,そのための作業量が多くなるが,境界要 素法では接触点近傍での表面だけを細く要素分割すれば 精度のよい解が得られる。

表面の膜と基板を同時に解析するときは,境界要素法 と有限要素法を同時に用いるハイブリッド型の解法が有 効である⁷。すなわち,基板に境界要素法を用い,多層膜 に有限要素法を適用すればよい。

摺動時に内部にき裂が生じ、それからはく離が起こる

ことがあるが、このようなき裂の解析にも境界要素法は 有効である⁸⁾。斜めき裂に引張荷重を加えたときの最大 主応力の分布を図6に示す。き裂先端にはき裂の特性を 表す特殊な境界要素を用いており、破壊が進行するかど うか、簡単に判断することができる。

4.2 塑性加工シミュレーション

有限要素法による接触大変形解析技術の進歩により, 生産技術,特に塑性加工過程のシミュレーションが実用 化しつつある。加工法として長い伝統と経験がある塑性 加工法を,応力解析の観点から,あるいは加工寸法の最 適化の観点から見直すのに有効である。

ハーメチックシールで、プラスチックス被覆導体の締め付け加工過程をシミュレートしたものを図7に示す。 ダイスの押し付けにより、金属基板が塑性流動を起こし、 被覆チューブが大きくへこんでいる様子がわかる。同時に、塑性流動が生じた金属基板に、半径方向の負の残留

図 6 斜めき裂応力分布 斜めに引張荷重がかかっ たときのき裂周りの応力分 布を示す。 応力の生じていることもわかる。このようなシミュレー ションは被加工材の強度評価に,さらに加工量の最適化 の指針を得るのに利用されている。

5 円筒容器の座屈解析

大型液体容器は大きな地震のもとで座屈変形を生じる 可能性があるため,容器と内部液体との連成振動を考慮 した解析が必要である。静的なせん断荷重に対する短い 円筒容器の座屈挙動のシミュレーション結果⁹⁾を図8に 示す。

円筒下部に鏡板がない場合とある場合との座屈モード についての比較を同図(a)に示す。この解析では,塑性お よび大変形双方の非線形の効果が考慮されている。同じ 計算結果の荷重-変位関係を同図(b)に示す。せん断荷重P

(a) 加工前

(b) 加工後の応力分布

61

図7 ハーメチックシール加工のシミュレーション (a)は加工前の形状を示す。(b)は加工後の形状であり,色は半径応力を示す(赤色:引張り,青色:圧縮)。ダイスの押し付けによって大きく塑性変形した部分に,圧縮の残留応力が生じている。

図8 せん断荷重を受ける円筒の座屈シミュレーション (a) 鏡板があるために座屈のしわが小さくなっている。(b) せん断荷重と円筒上

端での変位との関係を示す。

は初期不整がない場合の理論座屈荷重Pcrにより、また 変位は円筒上端の変位wを板厚tで正規化して示してあ る。同図(b)には、円筒の初期不整(ただし、不整量δは円 筒の板厚tによって正規化してある。)の影響の解析結果 も示してある。また、同一の荷重モードに対する実測結 果もあわせて示してある。同図(b)から、このような荷重 モードでは、初期不整や鏡板の有無によって座屈荷重は 大きな影響を受けないことがわかる。

一般に円筒構造の座屈には,境界条件,初期不整,荷 重モードなど各種の要因が影響することが知られてい る。これら各種の影響因子を実験あるいは解析によって

解明するには、多くのパラメータサーベイが必要である。 実験では影響因子の分離評価が必ずしも容易ではないた め、このようなシミュレーションが有効である。

おわりに 6

以上, 機械系CAEの最近の進歩について, いくつかの 例を中心に述べた。新製品開発での開発期間の短縮と性 能・信頼性の向上には、CAEの活用が不可欠である。そ のために、より高度で使いやすいCAEシステムの開発と 同時に、最新のコンピュータを駆使した高度なシミュレ ーション技術の開発を進めている。

参考文献

- Ikegawa, M., et al. : ASME W.A.M.1992 1)
- 山本:鉄道技術研究所報告, 871(1973) 2)
- Kato, C., et al.: AIAA Paper93-0145 3)
- Fanger, P. O., Thermal Comfort, Danish Technical 4) Press, Copenhagen (1970)
- Okamine, S., et al. Proc. SPIE, Topical Meeting 5) on Optical Mass Data Storage (1992-2)
- 7) Ezawa, Y., et al. Development of Contact Stress Analysis Program Using the Hybrid Method of FEM and BEM, 13th Int. Conf. Boundary Element Method in Engineering (1991)
- Ezawa, Y., et al. : Singularity Modeling in Two-and 8) Three-Dimensional Stress Intensity Factor Computa-

Ezawa, Y., et al. : High-Speed Boundary Element 6) Contact Stress Analysis Using a Super Computer, Boundary Element Techniques, Computational Mechanics Publications (1989)

tion Using the Boundary Element Method, Boundary Elements VII, Springer-Verlag (1985) 小久保,外:円筒かくのせん断座屈の解析(第2報,組合せ 9) 荷重の影響),日本機械学会論文集(A編),58,547,

436(1992 - 3)

62