高アスペクト比ホールの寸法測定を可能にした 高エネルギー走査電子顕微鏡「ミラクルアイ」

High Energy Scanning Electron Microscope for Measurement of High-aspect Ratio Holes

戸所秀男*	Hideo	Todokora
水野文夫**	Fumio	Mizuno

先端デバイス開発に活躍する高エネルギー走査電子顕微鏡「ミラクルアイ」 微細なコンタクトホールの開口確認, 寸法の高精度管理, 配線の不良解析(赤色矢印はエッチングによる配線内部の細り)に威力を発揮する。

半導体デバイスの高集積・微細化に伴い,層間の 配線を接続するコンタクトホールのエッチング状況 の確認と,寸法管理の重要性が増している。ところ が,高アスペクト比のホールになると,プロセス管 理の主流装置である低エネルギーの走査電子顕微鏡 を用いてもホール観察と寸法の計測が困難なため, 次世代デバイスの開発と歩留りの改善を中心に,高 アスペクト比のホール観察と寸法の計測ができる新 しい技術が切望されていた。このようなニーズにこ

ルアイ」を開発した。

ミラクルアイは,従来の1keV以下であった照射 電子のエネルギーを200 keVとし,ホール内で作ら れた反射電子を側壁を透過させて検出することがで きる。高エネルギーで電子の透過性が増したことか ら,(1)半導体デバイスを導電処理なしで観察できる こと,(2)三次元寸法計測ができること,(3)上層膜を 通して下層膜の観察ができることなどの新しい特長 を持つ。このミラクルアイは,先端デバイスの開発

たえて,高アスペクト比のホールを観察できる新しい観察原理の高エネルギー走査電子顕微鏡「ミラク

促進や不良解析による歩留り改善に役立つものと期

67

待できる。

* 日立製作所 計測器事業部 工学博士 ** 日立製作所 デバイス開発センタ

1 はじめに

高集積化された半導体の素子製造では,層間の配線を 接続するコンタクトホールのエッチング加工が素子製造 の歩留りを決定する重要技術になっている。ホール加工 ではエッチング残りなどの不良が発生しやすいため,加 工条件を厳密に決定する必要がある。このためには,ホ ール形状や残渣(さ)物の観察検査が必須(す)になる。

アスペクト比(深さとホール径の比)が2から3程度の ホールは1keV以下のエネルギーの照射電子を用いる低 エネルギーの走査電子顕微鏡¹⁾で観察することができ た。ところが,アスペクト比が3を超えるホールの観察 は困難なため,高アスペクト比のホールを観察できる新 しい技術が切望されていた。

高エネルギー走査電子顕微鏡「ミラクルアイ」はこの ようなニーズにこたえたもので,200 keVの高エネルギ

図2 二次電子信号比のエネルギー依存性 信号比(表面を照射したときを」とした強度比)は,高エネルギー にすることによって増加するので,観察が可能になる。

図1に示す。一次電子照射によって二次電子と反射電子

ーの電子を用いることによってホール観察を可能にした。ここでは、ミラクルアイの観察の原理とその特長について述べる。

2 高エネルギー化によるホール観察²⁾

高エネルギーの電子でホールを観察している様子を

注:略語説明 SE-1(一次電子が作る二次電子) SE-2(反射電子が表面で作る二次電子) 図 | ミラクルアイによるホール観察の原理 高エネルギーの電子を用いることにより,ホール側壁を貫通した 反射電子が表面を脱出する際に作る二次電子(SE-2)を検出する ことができる。

68

が発生する。二次電子(SE-1)はそのエネルギーが小さ いため側壁で吸収されてしまう。一方,反射電子は一次 電子に近いエネルギーを持つため,照射電子のエネルギ ーを高くすると側壁を貫通して表面から外に飛び出すよ うになる。この反射電子は表面を通過する際に,二次電 子(SE-2)を発生させるのでこれを検出することができ る。この二次電子(SE-2)は,反射の電子強度に比例して いるのでホール内部の形状が観察できる。

高エネルギー化による信号比(ホールからの信号と平 たん部からの信号の比)の改善効果の実測結果を図2に 示す。試料はアスペクト比4のレジストのホールである。 エネルギーが高くなるに従って,反射電子が貫通するよ うになり,信号比が改善される。ホール観察に最適なエ ネルギーはホールの深さに依存する。今後の半導体プロ セスでは、ホールの深さは変わらず、ホール径だけが小 さくなるので、ミラクルアイ(最高エネルギー:200 keV)はアスペクト比が5以上のホールにも対応できる。

3 ミラクルアイの特長と観察例

深さは約500 µmに達する³⁾。

1 keVの電子の侵入深さは約10 nmである。このため, 低エネルギー走査電子顕微鏡では主に表面だけしか観察 できない。これに対して200 keVになると, 試料の内部深 くに侵入できるので, 計算によるとSiの場合でその侵入

このような高エネルギーの照射電子を用いているミラ クルアイは、高アスペクト比のホール観察のほかに次の ような特長を持っている。

図3 ホール内部の観察

低エネルギー走査電子顕微鏡による観察(b)では見えていないホール内の残渣が、ミラクルアイ(a)でははっきりと観察できる。

(1) 半導体試料を導電処置なしで観察できる。レジストやSiO₂の絶縁物(数ミクロン)内で電子正孔対を発生させ,絶縁物に導電性を与える⁴。
(2) 試料傾斜をすることにより,三次元の寸法計測がで

ネルギー走査電子顕微鏡による観察例を同図(b)に示す。 低エネルギー走査電子顕微鏡による観察ではホールの底 が暗く,何も見えない。一方,ミラクルアイではホール 底部にある突起状残渣物が明りょうに観察できる。この ように,これまで試料を破壊する断面観察でだけ可能で

(3) 内部構造が観察できる。

3.1 ホールの観察例

きる。

ミラクルアイによるホールの観察例を図3(a)に、低エ

あったホール内部の状態を,ウェーハのままで観察でき ることがミラクルアイの特長である。

ホールを10度傾斜させて観察した例を図4(a)に示す。

	上面径	底面径	深さ
ミラクルアイ	0.556 µm	0.400 µm	1.523 μm
断面計測	0.547 µm	0.406 µm	1. 527 μm

(a) ミラクルアイ三次元計測

(b) 断面計測

図4 三次元計測と断面計測の比較 ミラクルアイによる立体観察(a)から求 めた寸法は、断面像(b)による計測とよく 一致する。

図5 内部観察の例 上層のアルミ配線を透過して、下層のタングステン配線が観察できる。

低エネルギー走査電子顕微鏡では見ることができなかっ た裏側が手前の壁を透過し,ホールが立体的に観察でき る。この像から上面径,下面径ばかりでなく,ホールの 深さも求めることができる。このようにして計測した寸 法を断面観察した同図(b)から得た寸法と比較して同図の 表に示す。両者は良い一致を示した。

3.2 内部観察の例

二層配線部の観察例を図5(a)に示す。観察した試料の 断面構造を同図(b)に示す。上層にアルミ配線があり、2 µm内部にタングステン配線がアルミ配線に直交してい る。低エネルギーでは観察できない下層のタングステン 配線が、上層のアルミ配線を透過して観察できる。この 特長は、絶縁膜下の構造観察や上下層の合わせ精度の確 認などに応用できる。

- 次電子 200 kV-1 μC (シ) WAT (シ) *来ガス内熱処理 (450℃-30 min)) (シ) (mm)

注:略語説明

N-MOS (N-channel Metal Oxide Semiconductor)

図6 電子線損傷の評価

160分の観察で周辺 | mmに損傷が認められたが,通常の観察時間(|分)では10μm内に限定される。また,アニール処理によって 消失する。

物質中に入射された電子のエネルギーの損失機構に は、構成原子の電子を励起あるいはイオン化することに よるものと、構成原子との弾性衝突によるものの2種類 がある。照射による試料損傷の大きさは、対象物内での 電子エネルギーの損失に比例する。

200 keVになると、1~2µmのレジスト膜は容易に通 過してしまい、レジスト内でのエネルギー損失は0.2 keVと、1 keVよりも少なくなる。レジストの損傷は重合 や解離による萎(い)縮と膨潤による形状変化として現れ るが、この量は非常に小さく問題にならないことがわか った。

MOS (Metal Oxide Semiconductor)デバイスの場合 には、電子がゲート酸化膜を通過すると正孔が残留し、 デバイスの電気特性劣化(Vthシフト)として現れる。寄 生MOSトランジスタへの影響の例を図6に示す。200 keVの電子を長時間一定個所に照射し、周辺での寄生 MOSトランジスタの特性劣化を調べた。照射量は1µC である。これは通常の観察で160分間連続観察に相当す る。周辺1mmの範囲でVthのシフトが認められた。この Vthシフトは450℃で30分の水素ガス内の熱処理で消失 した。通常の観察が1分以下であることを考えると影響 の範囲は10 µm以下になる。こうした結果から,評価終 了時に熱処理を入れる,テスト素子をスクライブ部に設 けるなどの配慮をすることにより,量産ラインでの使用 も可能と考えられる。

5 おわりに

ここでは、高アスペクト比のホール観察を可能にする 新しい観察法について述べた。これまで1keV以下であ った走査電子顕微鏡の加速電圧を200 keVに高め、ホー ル内で作られた反射電子を側壁を透過させて検出するこ とができるミラクルアイは、(1)半導体試料を導電処理な しで観察できること、(2)三次元の寸法計測ができるこ と、(3) 上層膜を透かして下層の構造が観察できることな どの新しい特長を持っている。高分解能でもあることか ら、0.2 µm以降のプロセスにも適用可能である。

参考文献

70

1) 古屋,外:電子ビームを用いた半導体プロセス評価装置, 日立評論, 73, 9, 867~872(平3-9) in solid materials, J. Appl. Phys. 42, pp.5837~ 5846(1971)

 F. Mizuno, et al.: Observation of deep holes using new technique, SPIE, Vol.1929, p.347(1993)
 T. E. Everhart, et al.: Determination of kilovolt electron energy dissipation vs penetration distance 4) D.M.Taylor: The effect of passivation on the observation of voltage contrast in the scanning electron microscope, J.Phys., D, 11, pp.2443~2454(1978)