# 1,000 kV用避雷器の開発

## - 高エネルギー耐量素子避雷器-

# Development of Zinc Oxide Surge Arrester for 1,000 kV Power System

| 山形芳文* | Yoshibumi Yamagata | 白川晋吾**  | Shingo Shirakawa | 山田誠一**** | Seiichi Yamada |
|-------|--------------------|---------|------------------|----------|----------------|
| 田中晃司* | Kôji Tanaka        | 飯村紀夫*** | Norio Iimura     | 小沢 淳**** | Jun Ozawa      |



#### 1,000 kV用避雷器とLIWVの関係

I,000 kV用避雷器の内部構造と系統電圧と絶縁レベルの関係について示す。I,000 kV用高性能避雷器の開発により、I,000 kVガス絶縁開閉装置 でLIWV2,250 kVの絶縁設計を可能にしている。

電力需要に対応して,電源の拡充や広域運営の拡 大が進められ,この一環として1,000 kV送電導入が 検討されている。平成5年には1,000 kV実証器の基 本仕様が発表されている<sup>1),2)</sup>。

1,000 kV用避雷器の開発によって送変電設備の 絶縁レベルを適切な値に設定することができ,1,000 kV送変電機器〔例:GIS(ガス絶縁開閉装置),変圧 器など〕が合理的に実現できるようになってきた。 常時の系統電圧に接続して耐えるようにすることに より,高性能化が進められてきた。このため日立製 作所は,酸化亜鉛素子の小電流領域での課電寿命特 性,TOV(Temporary Over Voltage:短時間過電 圧)耐量,開閉サージ放電耐量,大電流領域の制限電 圧などの改善を実施し,さらにTOV耐量確保のため のスクリーニング方法を確立し,1,000 kV系統の LIWV(雷インパルス耐電圧)選定の根幹をなす絶縁

協調のかなめである1,000 kV用避雷器を開発した。

27

避雷器の基本特性は制限電圧-電流特性で示される。 遊雷器は動作時の制限電圧をできるだけ低くし,

\* 東京電力株式会社 送変電建設本部 \*\* 日立製作所 国分工場 工学博士 \*\*\* 日立製作所 国分工場 \*\*\*\* 日立製作所 日立研究所 \*\*\*\*\* 日立製作所 日立研究所 工学博士

#### 1 はじめに

1,000 kV用ガス絶縁タンク形避雷器は,酸化亜鉛素子 の課電寿命特性,TOV耐量,開閉サージ放電耐量および 制限電圧特性の改善により,表1に示すように現状の500 kV用避雷器,欧米の735 kV避雷器に比較して高性能化 が図られている。運転電圧に対する絶縁レベル(LIWV) は約20%以上低減しており、1,000 kV GIS、1,000 kV 変圧器などの絶縁レベルを低減でき,機器の小型化に大 きく寄与している。ここでは、1,000 kV用避雷器の開発 課題と特性について述べる。

#### 2 1,000 kV用避雷器の仕様と課題

1,000 kV用避雷器の基本仕様は、定格電圧826 kV、制 限電圧1,620 kV/20 kA, TOV耐量55 MJ, 開閉サージ動 作責務221 µF/14 kVである。TOV耐量が開閉サージ耐

避雷器の特性比較 表

1,000 kV用避雷器が最も運転電圧に対する制限電圧が低く,高性 能の特性が求められている。

|        | 項目 |    |            | 現状          | 欧米                 | 高性能1,000 kV用ガス<br>絶縁タンク形避雷器 |
|--------|----|----|------------|-------------|--------------------|-----------------------------|
| 系      | 統  | 電  | 圧(kV)      | 500         | 735                | 1,000                       |
| L      | 1  | W  | V(kV)      | 1,425,1,550 | 2,100              | 2,250                       |
| 避<br>定 | 格  | 雷電 | 器<br>圧(kV) | 420         | 612                | 826                         |
| 制      | 限  | 電  | 圧(kV)      | 870/10 kA   | I,560/20 kA        | I,620/20 kA                 |
| 備      |    |    | 考          | タンク形        | カナダHydro<br>Quebec | タンク形                        |

トを4並列接続し、高電圧側には絶縁筒を配置し、これ らのユニットをタンクの両端から挿入し、中間部を接続 する組立方式としている。なお,酸化亜鉛素子は絶縁筒 や素子中心部に配置した絶縁支持棒によって支持され

量より大きくなっているので、TOV耐量に耐える酸化亜 鉛素子の特性管理方法が課題となる。

#### 2.1 設計因子と構造

1,000 kV用避雷器の設計因子は上記の仕様から,図1 のように示すことができる。 避雷器の保護特性, 耐量特 性から酸化亜鉛素子の直並列数が選定され、素子接続構 造,酸化亜鉛素子間の電圧分担(電位分担制御用シールド 構造), タンク構造などが主設計要素となる。

図1の中には、1,000 kV用避雷器の電位分布解析例、 酸化亜鉛素子の4並列16柱配置構造を示す。1,000 kV用 避雷器の内部構造を図2に示す。素子配置の基本構造は 500 kV用避雷器をベースとし、この500 kV避雷器ユニッ ている。

#### 2.2 酸化亜鉛素子のスクリーニング

1,000 kV用避雷器は高性能の酸化亜鉛素子を直並列 して構成される。使用素子個数も4並列294直列と多く, 素子1個1個の特性管理が重要な要素となる。酸化亜鉛 素子のTOV耐量の変遷を図3に示す。500 kV高性能避 雷器の250J/cm<sup>3</sup>に対し、1,000 kV用避雷器では300J/ cm³としている3)。

スクリーニング方法については非破壊による方法(超 音波,X線撮影,抵抗分布)と電流通電によるエネルギー 注入(商用周波電流, 方形波電流)の二つに大別される。 ここでは, 方形波電流通電と通電時の温度分布とを組み

酸化亜鉛素子

| 避雷器の適用場所(線)            | 路引込口,母線端,変圧器用)                                                                         |                                                                          |            |
|------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------|
| 系統電圧<br>最大1,100 kV (1) | 過電圧<br>線地絡時など) 避雷器定格<br>電圧 826 kV                                                      | 避雷器<br>制限電圧                                                              |            |
| 避雷器設計因子                | 避                                                                                      | 雷器仕様                                                                     |            |
| 素子直列数                  | <ul> <li>●連続使用電圧</li> <li>●制限電圧</li> <li>●TOV(短時間過電圧)耐量</li> <li>●開閉サージ動作責務</li> </ul> | 1,100 kV/√3<br>1,550 kV/10 kA<br>1,620 kV/20 kA<br>55 MJ<br>221 µF/14 kV | 電位分布 施禄支持棒 |
|                        | ● 雷インパルス耐電圧<br>● 商用周波耐電圧                                                               | 2,250 kV<br>1.5E×30 min − √3 E×1 min − 1.5E×30 min                       | D D D      |
|                        | <ul> <li>●課電寿命</li> <li>●平たん率</li> <li>●電圧分担</li> </ul>                                | 課電率0.9<br>1.5<br>1.1                                                     |            |





28



#### 図2 1,000 kV用避雷器の内部構造

酸化亜鉛素子を4並列,16柱配置して500kVユニットを構成し, 高電圧側に絶縁筒を配置し,これら500kVユニットをタンク両端か ら挿入して中間で接続し,電位分担は同心状リングシールドによっ て行っている。

合わせた方法を採用した。スクリーニング手法とTOV耐 量の考え方のフローを図4に示す。



図 4 スクリーニング手法とTOV耐量の考え方 酸化亜鉛素子のスクリーニングの方法を示す。



酸化亜鉛素子のTOV耐量評価として,酸化亜鉛素子に あらかじめ2ms方形波電流(開閉サージ放電耐量相当) を印加し,全数所定のエネルギーに耐えるかどうかで第 一次のスクリーニングを行っている。さらに,このとき 酸化亜鉛素子表面の温度均一係数*δ*(=酸化亜鉛素子表 面の最高温度/最低温度),および最高温度/平均温度を素 子全数試験ラインのコンピュータで自動的に算出するよ うにした。素子全数試験ラインでの試験状況を図5に, 素子試験ラインで求めた素子の熱画像の例を図6に示 す。素子表面の温度均一係数のよい素子はTOV耐量がよ い傾向を示す。

3 1,000 kV用避雷器の特性

3.1 絶縁性能

酸化亜鉛素子を取り除いた1,000 kV用避雷器で,最低



図5 酸化亜鉛素子の試験ラインでの試験状況 酸化亜鉛素子の均一係数が自動的に求められる。





図 6 酸化亜鉛素子の熱画像出力例 酸化亜鉛素子に方形波電流を通電したときの素子表面の温度分 布を測定する。

29

図3 AC TOV耐量の変遷 酸化亜鉛素子のTOV耐量の推移を示す。1,000 kV用では最も高い 耐量が必要とされている。 保証ガス圧力で雷インパルス試験電圧2,250 kV, 商用周 波試験1.5E(953 kV)×30分-√3 E(1,100 kV)×1 分-1.5E(953 kV)×30分に耐えることを確認した。

#### 3.2 制限電圧試験

制限電圧試験は電インパルス発生装置に適切なインダ クタンスを入れ、完成品避雷器で試験した。1,000 kV用 避雷器の制限電圧試験状況を図7に、避雷器の制限電 圧-電流特性の波形を図8に示す。10 kA通電で仕様値 1,550 kV/10 kAを満足している。なお、ブッシング入り 口での端子電圧を図9に示す。原電圧は約3,000 kV以上 を発生させており、避雷器は所定の制限電圧-電流特性 によって電圧抑制していることを示す。1,000 kV用避雷 器の制限電圧特性は、分割区分での換算値と完成品での 測定値で図10に示す。換算値と測定値は一致している。

#### 3.3 分流特性

1,000 kV用避雷器は4並列接続構造としている。下段

子の放熱特性は指数関数的になり,放熱時定数は約98分である。この特性を満足する分割区分によって安定性評価試験を行った。

### 3.5 安定性評価試験

第1区分では、実フィールド25℃の環境で30年間使用



図 8 1,000 kV用避雷器の制限電圧 – 電流波形

側500 kVユニット間で測定した分流波形を図11に示す。分 流比は1.1以内であり、4 並列間でほぼ均等に分流している。

#### 3.4 放熱特性

30

完成品避雷器に試験用変圧器で電流を流すことにより,酸化亜鉛素子を温度上昇させ,放熱特性を求めた。 1,000 kV用避雷器の放熱特性を図12に示す。酸化亜鉛素



10 kA領域での避雷器の制限電圧 – 電流応答波形を示す。



図9 ブッシング端の電圧波形 避雷器によって雷インパルス電圧が抑制されたときのブッシン グ端の電圧波形を示す。



図7 1,000 kV用避雷器の制限電圧試験状況 雷インパルス電圧発生装置を使用して,避雷器の制限電圧試験を 行っている状況を示す。

| Ť          |         |          |     |      |       | No. 101 IN THE STREAM OF |
|------------|---------|----------|-----|------|-------|--------------------------|
| 0.01       | 0.1     |          | 1.0 |      | 10    | 100                      |
|            |         | 電        | 流   | (kA) |       |                          |
| 10 1,000 4 | (V用避雷器の | の制限      | 電圧  | -電流  | 特性    |                          |
| 完成品避雷器     | 器と分割区分泌 | 庭<br>雷器· | で求  | めた特性 | 生を示す。 |                          |

义



図|| |,000 kV用避雷器のインパルス電流分流波形 4 並列で構成されている素子群に,放電電流は500 kVユニット間 でほぼ均等に分流されている。



なお,開閉サージ動作責務(線路長250 km, 221 μF/14 kV)時の波形を図14に示す。

第4区分では、短時間過電圧仕様値55 MJ以上を注入 し、運転電圧30分印加で熱暴走しないことを検証した。 試験方法は上記スクリーニング手法によって得られた 酸化亜鉛素子を用いて4並列で14 kV避雷器ユニットを 構成し、発電機を使用してTOV耐量試験を実施した。当 初、期待どおりのTOV耐量を求めることができた。試験 時の波形を図15に示す。これは完成品換算で56.3 MJに 相当している。

#### 3.6 機械的性能

1,000 kV用になると形状寸法が大きくなり,機械的検 討が重要となるので,(1)0.3G,正弦3波加振による実器 での耐震試験,(2)変圧器の励磁振動などによる微小振動 を考慮した100 Hz, 0.5G, 10万回の支持構造安定性試 験<sup>4)</sup>,(3)トレーラによる輸送試験,(4)実器を恒温室内に

内部素子温度の放熱は指数関数的になる。

することを想定し、アレニウス経験則に従うものとして、 温度が10℃上昇すると課電劣化の加速係数が2.5倍にな るという経験則から、寿命を素子単体で、高温加速劣化 試験を周囲温度115℃,課電率0.90で実施した。酸化亜鉛 素子のワットロスと漏れ電流の経時変化を図13に示す。 酸化亜鉛素子は安定して良好な課電特性を示している。

第2区分では、電インパルス大電流に対する放電耐量の検証として、素子単体に65kA通電している。

第3区分では,開閉サージ動作責務時のエネルギーに 相当する方形波電流として素子単体に2,000 A×2 ms× 2回通電し,定格電圧2秒印加後,運転電圧を印加して 熱暴走しないことを確認した。





図|4 開閉サージ動作責務時の波形

線路長250 km相当での再閉路(抵抗投入失敗)時の受電端避雷器 の動作状況を示す。



#### 図13 酸化亜鉛素子の課電寿命試験 酸化亜鉛素子の経時的な特性を示す。安定した特性を示している。

図15 1,000 kV用避雷器のTOV耐量試験時の波形
 14 kVユニットで実施し、注入エネルギー換算値56.3 MJのTOV耐量特性を示す。

31









図16 1,000 kV用避雷器の耐震試験と発生応力
 実避雷器を耐震試験台に搭載し、加振方向をタンク径、タンク長
 手、タンク上下方向に加振したときの応力を示す。

配置しての冷熱試験などによる機械的検証を行った。

1,000 kV用避雷器の耐震試験状況と加振方向と絶縁 支持棒の応力との関係を図16に示す。タンク上下方向の 加振が最も大きいが、応力的には余裕がある。

環境試験室での1,000 kV用避雷器の設置状態,さらに 恒温室温度の変化と内部酸化亜鉛素子の温度変化を図17 に示す。SF<sub>6</sub>ガスは熱的緩衝材となり,酸化亜鉛素子の温 度は周囲温度の変化に穏やかに応答している。 図17 Ⅰ,000 kV用避雷器の冷熱試験
 実避雷器を環境試験室に搬入し、ヒートサイクル試験に加え、
 -30℃でのタンクおよび内部素子の温度推移を示す。

## 4 おわりに

ここでは、1,000 kV用避雷器の開発内容と電気的、機 械的特性について述べた。1,000 kV用避雷器は1,000 kV 系統の合理的絶縁設計を可能にしてきた。他方、1,000 kV用避雷器は電力用避雷器の最高位にあり、今後、1,000 kV用絶縁協調のかなめとなって1,000 kV系統での過電 圧抑制に役立つことを念願している。

#### 参考文献

- 1) 田邊:100万V昇圧に向けた技術開発・建設について、平 成5年電気学会電力・エネルギー部門大会、575
- 2) 白川:酸化亜鉛形避雷器の最近の動向,電気学会論文誌
   B, 114巻, 5号(平成6年)
- 3) 中田,外:1,000 kV用避雷器のスクリーニングとTOV耐 量,平成6年電気学会電力・エネルギー部門大会,628
- 4) 中田,外:1,000 kV用避雷器の支持構造安定性試験,平成6年電気学会全国大会,1471

32