特集 粒子加速器に関する日立システム技術

シンクロトロン加速器用高精度電磁石電源

Highly-Stabilized Power Supply for Synchrotron Accelerators —High Speed, Low Ripple Power Supply—

■ 佐藤健次*	Kenji Satô	古関庄一郎****	Shôichirô Koseki
熊田雅之**	Masayuki Kumada	久保 宏*****	Hiroshi Kubo
深見健司***	Kenji Fukami	金沢 徹******	Tôru Kanazawa

大型放射光施設"SPring-8"の入射系施設の全容 SPring-8の入射系は,リニアック(直線部,長さ約180m)とシンクロトロン(だ円形部,周長約400m)で構成し,上図の施設内に設置されている。

近年,シンクロトロン加速器は医療装置,放射光利用 設備などへの応用が急速に進展している。これらの加速 器では,高エネルギービームを有効に利用するために, 1秒から数秒の短周期で加速,取り出しを繰り返して運 転する。このような短周期の通電パターンに対して,ビ ーム軌道を安定に保って加速するために,電源は10⁻³以 下の誤差で電流を追従させるトラッキング性能が要求さ れる。さらに,外部に取り出すときのビームの強度,均 て低いリプルが必要とされている。

このような高速応答,低リプルの特性を持つ電源を開 発し,科学技術庁放射線医学総合研究所の重粒子線がん 治療装置"HIMAC"(Heavy Ion Medical Accelerator in Chiba)および日本原子力研究所大型放射光施設 "SPring-8"用シンクロトロンに適用した。前者では1994 年3月から運転を開始しており,仕様を上回る高性能が 得られ,現在,がん治療の研究に利用されている。

77

一性を保持するため、出力電流は10-5から10-6ときわめ

*大阪大学 理学博士 **科学技術庁放射線医学総合研究所 理学博士 ***日本原子力研究所 工学博士 ****日立製作所 日立工場 工学博士 *****日立製作所 日立工場 ******日立エンジニアリング株式会社

1. はじめに

医療装置,放射光利用設備などにシンクロトロン加速 器が利用されている。この加速器には,高エネルギービ ーム軌道での安定した加速と,外部取り出し時でのビー ムの強度,均一性の保持が求められている。このニーズ にこたえて,高速応答,低リプルの電磁石電源を開発し た。ここでは,シンクロトロン加速器用電磁石電源の 低リプル化,高トラッキング化のための手法について述 べる。

2. シンクロトロンの応用例

シンクロトロンは主に素粒子研究用に利用され,最近では医療装置,放射光発生装置などにも応用されている。

2.1 医療用加速器

科学技術庁放射線医学総合研究所では、1994年3月に

図1 重粒子線がん治療装置 "HIMAC" の鳥かん図 シンクロトロンは上下2セットあり,周長約130mのリング内に 電磁石電源を設置している。

式を開発し、40 µsの追従性能を達成した。一方、電流リ プルについては電子がリングを1周回する時間内でビー

重粒子線がん治療装置"HIMAC"を完成させ,重粒子に よるがん治療の研究を進めている。この装置は,各種イ オンをリニアックで核子当たりエネルギー6 MeVに加 速後,シンクロトロンで最高800 MeVまで加速し,加速 ビームをがん細胞に照射して治療するものであり,重粒 子線加速器としては世界最大級である。装置の鳥かん図 を図1に示す。この装置は,強度,均一性を保ってビー ムをゆっくりと外部に取り出すため,電磁石電流のリプ ルを極小にする必要がある。この電源では,従来にない コモン モード フィルタの採用などにより,10⁻⁶以下と きわめて小さな電流リプルを達成し,ほかの補助的手段 に頼ることなく主電源単独で高品質のビームの取り出し に成功した。

2.2 放射光発生用加速器

日本原子力研究所では,理化学研究所と共同で大型放 射光施設"SPring-8"の建設を進めている。シンクロト ロン加速器は,電子を光速近くまで加速し,放射光を発 生する蓄積リングに入射する装置である。

SPring-8は,放射光施設では8GeVと世界で最大級の エネルギーを誇り,1998年に放射光を供給開始する予定 である。入射系シンクロトロン用電磁石電源は1996年9 月に性能確認試験を終了した。このシンクロトロンは蓄 積リングに大量の電子を蓄えるため,1秒と短周期で加 ムを取り出すため、10⁻⁴とHIMACに比べると緩やかな 仕様になっている。

3. シンクロトロン加速器用電磁石電源

3.1 電源仕様

シンクロトロン加速器では、ビームを軌道に沿うよう に偏向させる偏向電磁石,軌道に対してレンズの役割を する四極電磁石,および軌道補正を行う電磁石によって 軌道の制御を行う。これら電磁石を励磁する主電源の仕 様を表1に,励磁パターンと所要性能の例を図2にそれ ぞれ示す。

3.2 電源の方式

3.2.1 リプル低減方式

電源の出力リプルについては、図3の①から⑦に示す

表1 主電源の仕様

HIMACではシンクロトロン2セット分の員数を示す。

シンクロトロン加	速器	HIMAC	SPring-8			
	員	数	2 台	I台 5,I30 kW 3,420 V		
佢占重磁工電酒	出	カ	5,100 kW			
冊 「 毘 窓	電	圧	2,270 V			
	電	流	2,260 A	I,500 A		
	員	数	4 台	2 台		
四杨雪磁石雪酒	出	カ	466 kW	674 kW		
凹極电磁口电标	電	圧	343 V	1,260 V		
	電	流	I,360 A	535 A		
パターン周期		2~3.3 s	l s			
トラッキング		$ \times 0^{-3}$	$1 imes 10^{-3}$			
電流リプル*			$I imes I 0^{-5}$	1×10^{-4}		

速,	出射	を	繰	ŋ	返	す	特	徴	が	あ	З	0	電	源	は	,	仕	様	σ)精	渡	T
トラ	ッキ	ン	グ	z	せ	ろ	た	め	,	加	速	時	の	バ	タ	-	ン	12	: 3	40	μs	以
下で	電流	を	追	従	3	せ	ろ	必	要	が	あ	る	0	Z	の	よ	Ś	な	古同	速	応	答
を実	現す	3	た	め	,	P	ク	テ	イ	ブ	フ	亻	IV	タ	に	よ	3	高	速	制	御	方

注:*定格電流時の仕様を示す。

78

図2 SPring-8電磁石の励磁パターン例 1秒周期で繰り返し運転する。

方式によって低リプル化を実現した。

3.3 アクティブフィルタ制御

3.3.1 リプル除去

アクティブフィルタは、電源の出力電圧に含まれるリ プル成分を検出し、リアクトルトランスを介して逆位相 でリプルに相当する電圧を発生することによってリプル 成分を打ち消すものである。出力電圧は、通電パターン に従って急しゅんに変動し、電磁石のコイル温度などで も変化するので、リプル成分だけ正確に検出できる制御 回路とした。

3.3.2 トラッキング改善

電源の制御は,定電流制御回路が基本となり,電流設 定値と電流検出値の誤差でサイリスタの位相制御を行っ ている。この場合,サイリスタ変換器,パッシブフィル タの遅れがあるため電圧が即応できず,定電流制御のゲ インを高くできなかった。SPring-8では,上記遅れ分を アクティブフィルタで補償する制御方式を採用すること

3.2.2 トラッキング改善方式

(1) HIMACでは,追従誤差をディジタル制御装置に取 り込み,繰り返し周期制御で設定電圧パターンを修正す ることによって追従誤差を抑える方式とした¹⁾。

(2) SPring-8では,次章で述べるアクティブフィルタに よる高速制御方式を開発し,周期制御を用いなくてもト ラッキング性能を十分満足できるようにした。 により,電流制御ループの遅れをなくし,電流制御ゲインを1けた以上高くすることを可能として²⁾,トラッキングを大幅に改善した。

3.4 試験結果

3.4.1 電流リプル測定

HIMAC電源の出力電圧リプルを周波数分析した結果 を図4に、これから電流リプルを算出した結果を表2に

79

注:略語説明 SVC(無効電力補償装置), PLL(Phase-Locked Loop), APPS(自動パルス移相器) ACR(定電流制御), AVR(定電圧制御), AF(Active Filter)

図3 偏向電磁石電源の回路構成と特徴 ①から⑦の方式によって電源出力の低リプル化を実現した。

図4 HIMAC四極電磁石電源の出力電圧周波数分析結果

アクティブフィルタによってリプルを大幅に低減した。

表2 出力電流リプル測定結果(HIMAC四極電磁石電源)

アクティブフィルタによって電流リプル10-6以下を実現した。

周波数 (Hz)	アクティ 切り離し	ブフィルタ 時	アクティブフィルタ 投入時				
(112)	電圧(dB)	電流(p-p)*	電圧(dB)	電流(p-p)*			
50	-67	1.3×10 ⁻⁶	-95	0.5×10 ⁻⁷			
100	-31	4.2×10 ⁻⁵	-76	2.3×10^{-7}			
150	-56	1.6×10 ⁻⁶	-88	0.4×10 ⁻⁷			
200	-55	1.3×10 ⁻⁶	-81	0.7×10 ⁻⁷			
300	-53	. × 0 ⁻⁶	-89	0.2×10 ⁻⁷			
600	-62	2.0×10 ⁻⁷	-77	0.4×10 ⁻⁷			
1,200	-43	8.8×10 ⁻⁷	-85	0.I×I0 ⁻⁷			

注:*定格電流に対する割合を示す。

それぞれ示す。アクティブフィルタでリプルを大幅に低 減しており、電流リプルとして10-6以下を実現した。 3.4.2 トラッキング誤差測定

SPring-8電源でのトラッキング誤差の測定結果を 図5に示す。トラッキング誤差は電流設定値と実電流と の誤差の定格電流に対する割合で規定しており、1.2× 10⁻⁴と仕様1×10⁻³を十分満足する結果を得た。

4. おわりに

ここでは、シンクロトロン加速器用電磁石電源の低リ プッル 声トラッキング化のためのモ注について述べた

注: *減速部ではトラッキングは規定されない。

図 5 SPring-8偏向電磁石電源のトラッキング誤差測定結果 1.2×10⁻⁴のトラッキング性能(追従遅れ40 μs)を達成した。

従来にはないコモンモードフイルタ,電磁石の対称接 続などにより,低リプル化を可能とした。また,アク ティブフィルタによる遅れ補償によって高速応答を実現 した。

今回開発した電源方式は,今後の加速器用電磁石電源 に有効に適用できるものと考える。

プル化,高トラッキング化のための手法について述べた。

参考文献 高田,外:加速器用電磁石電源同期・繰返し制御,日立評論,79,2,225~228(平9-2) 古関,外:高速高精度電源制御方式の開発,電気学会産業応用部門全国大会,No.157(1991)