特集 高度医療システム

心磁図による心臓疾患診断のための心臓磁場計測システム

Newly Developed Magnetocardiogram System for Heart Disease Diagnoses

塚田啓二

Keiji Tsukada

超高感度な磁気センサであるSQUID(超伝導量子干渉素子)とそれを利用した心臓磁場計測システム(心磁計)の開発により, 心臓から発生している微弱な磁場を多点計測できるようになり,胎児から成人に至るまで,幅広い年齢層での心臓磁場を計測 できるようになった。また,心臓磁場の各種マッピング法により,心臓内の電気生理学的活動を無侵襲で可視化でき,経験な しに直読できるようになった。さらに,これらの解析でも,臨床医との共同研究により,不整脈や虚血性心疾患などの心臓疾 患の診断をサポートできる新たな各種解析技術が確立されつつある。

日立製作所が開発したこれらの技術は、今後、だれもが容易に速く、しかも精密な検査を受けることができる、新たな心臓 疾患の診断方法として役立つものと期待できる。

はじめに

心臓病はがんや脳血管疾患などと並んで死亡原因の上 位にあげられており,この早期診断と早期治療が強く望 まれている。

心臓の筋肉や神経の活動による細胞内外でのイオン活動は,等価的に電流となる。この電流は,体表面上での 心電図でとらえられる電位変化だけでなく,磁場変化と しても表れる。心臓磁場は約10⁻¹⁰ T以下と,地磁気の約 10⁻⁴ Tに比べて6けた以上小さい信号である。このため, 超高感度な磁気センサであるSQUID(Superconducting Quantum Interference Device:超伝導量子干渉素子) を利用した技術と,そのマルチチャネルシステムの開発 所は、64チャネルの心磁計を実現している。また、 SQUIDの高感度化に伴い、信号が微弱な胎児の心臓磁 場も計測できるようになり、さらに、不整脈や虚血性心 疾患などの電気生理学的に異常がある心臓疾患に対する 各種解析方法も明らかになった。

Akihiko Kandori

神鳥明彦

日立製作所は,上記のようなさまざまの最新技術の成 果を基に,独自の心臓磁場計測システムを開発した。

ここでは,心臓疾患の新たな診断法として,心磁図を 用いた心臓磁場計測システムについて述べる。

2 SQUID

SQUIDの構成を図1に示す。SQUIDのチップは、半導体プロセスと同様に、薄膜を積層させるフォトファブリ

が行われてきた。

11

近年, SQUIDの特性と信頼性向上により, マルチチャ ネル化が実現した。これにより, 心臓を1回の計測でカ バーでき, 1心拍ごとの解析が可能になるとともに, 空 間精度の高いマップが得られるようになった。日立製作 ケーション技術により、シリコンウェーハ上にパターン ニングされて量産できる。 SQUIDを構成する超伝導層はNb(ニオブ)である。ジョ ゼフソン接合はNbの間に薄い絶縁層(AlOx:酸化アルミ ニウム)を挟んだ構造で、トンネル効果による超伝導電

73

日立評論 (2000-9)

図1 SQUIDの構成

超伝導現象を利用したSQUIDにより、心臓から発生する微弱な 磁場を容易にとらえることができるようになった。

流が流れている。SQUID設計上の主要パラメータは, ワッシャリングのホールの大きさ、入力コイルの巻数、 シャント抵抗値,およびジョゼフソン接合の臨界電流 値である。これらを最適化をすることにより, 高感度 な心磁計用のSQUIDが実現できる。検出感度について は、心磁計に搭載したSQUIDは1~100 Hzの周波数帯 域で10fT/√Hz以下(fは10⁻¹⁵)という高いSN比を持ち, 心臓磁場の計測に適している。また, SQUID技術は, 心磁計にとどまらず, 磁気センサとしても広く応用が 可能である。

図2 心磁計の測定範囲

胎児から成人までの心臓を1回の測定でカバーすることができ、 1心拍ごとの解析も可能となった。

して最小0.5 msまで計測でき、パソコンで64チャネルの データを収録して解析することができる。また,心電図 などの他の信号も取り込むことができる。

破 1U X

64チャネル心磁計 3

日立製作所は、心臓磁場を計測するために、64チャ ネルの心磁計「MC-6400型心臓磁気計測システム」を開 発した[73ページの写真(b)参照]²⁾。この装置では、磁 気センサと胸部または心臓との位置関係が正確にとれる ように, x, y, zの直交3方向にベッドを動かすことが できるようにしている。計測は簡易磁気シールドルーム の中で行い, 被験者は着服のまま受験できる。磁気セ ンサには,周波数応答特性として直流成分から測定で きる, 超伝導線で作製した一次微分コイルと, SQUID に接続したグラジオメータ(傾度測定器)を用いている。 この微分コイルと磁気シールドルームとを組み合わせる ことにより,環境磁気雑音に強い構成としている。グラ ジオメータは,超伝導状態にするために,真空断熱容

4.1 時間波形とそのマッピング

64チャネルの心磁時間波形は各点ごとの時間波形表 示や重ね合わせた波形として表示することができ,任 意の事象での信号強度や時間,時間幅が読み取れる。 また,任意の時間での磁場分布,すなわち等磁場線図 も表示できる。磁場はx, y, およびz成分に分けられる ベクトルである。このシステムでは、これらの3成分を 測定することなく磁気センサで直接計測した胸部に対 して、法線磁場成分Bzからは法線成分の「等磁場線図」 を, また, それに垂直なxとy成分を合成した接線成分 と等価的な「等磁場成分」をそれぞれ解析的に表示する ことができる。心磁の時間波形と,各事象での法線成 分から求めた接線成分の等磁場線図を図3に示す。同図 の等磁場線図では、心臓内の電流の方向と大きさが直 観的にわかるように表現した矢印を重ね合わせて表示

器であるジュワー瓶に入れた液体ヘリウムに浸漬して動 作させている。磁気センサアレーは25 mmのセンサ間隔 で8×8の格子状に配置し、175 mm×175 mmの測定面 積をカバーすることにより、成人の心臓を1回で計測で きる(図2参照)。各チャネルの時間波形は時間分解能と

等磁場線図の時間変化(時間間隔:6 ms)

図3 心磁図 MC-6400型心磁計で測定した64点での心磁時間波形と、その磁 場分布変化を示す。

している。等磁場線図では磁場の強度を等高線として 表し、色が濃いほど磁場が強いことを示している。

これまでの心磁図で用いられていた法線成分による 表示方法では、この図から電流源を推定しなければな らないことから、心臓の活動を直読することができな かった。一方、接線成分表示では、心臓内の電流強度 が大きいところと計測面での磁場強度の大きいところ が1:1に対応する特徴がある。このため、心臓内のど の部位が活動しているのか、電流がどの方向に流れて いるかなどを直読するのが容易であり、特に経験を必 要としない。等磁場線図は心室の脱分極過程(QRS波) を示しており、心室中隔から興奮が始まり、右心室か ら左心室へと興奮が移っているのが読み取れる。この ように、この心磁図では、心筋内でどの方向に電流が 流れていて、どの部位が活動しているかを画像的に判 断することができる。 される。

4.3 虚血性心疾患

虚血性心疾患は心臓病の中でも生活習慣病に分類さ れ,罹(り)病率も年齢とともに高位になる。この疾患 では,心筋に血液が一時的に不足する虚血状態から, 心筋が壊(え)死する梗塞(こうそく)の状態に推移して いき,重篤な症状となる。虚血状態の初期では,運動 時など心臓に負荷があったときだけに虚血状態が出て, 安静時には元に戻るという可逆的な変化を示す。このた め,虚血の早期では検出率が低く,診断が難しかった。

最近,心磁図による新たな虚血解析方法が提案された³³。 上述した心磁図は任意の瞬間での電流分布を示すが, これらを各時間帯ごとにマッピングすることにより, 心筋に流れたトータルの電流量の等積分図を求めるこ ともできる。特に心室の脱分極過程(QRS)と再分極過 程(ST-T)とでトータル電流分布が変化することに注目 した。各過程での等積分図を比較したものを図5に示す。 その結果,健常人では,QRSとST-Tとで電流量値の分 布に大きな違いはなかった。一方,虚血状態では, QRSとST-Tとで分布のパターンが大きく異なっている ことが新たにわかった。このように,虚血による特徴 的な再分極異常を,分布として一つの画像に抽出する ことができた。

4.2 不整脈の推定

不整脈には多くの疾患要因がある。このため、脚ブロックなどの伝導障害部位や、期外収縮、WPW(Wolff-Parkinson-White)症候群のような異常興奮部位などを知ることが診断上重要であり、伝播(ぱ)過程の可視化と、 部位の三次元的推定といった画像化技術が求められる。

期外収縮例として、その早期興奮部位の三次元的位置 を求め、その位置に対応するMRI(磁気共鳴イメージン グ)のスライス画像上に重ね合わせ表示したものを図4に 示す。この結果、心臓の右室自由壁部位に不整脈の起源 があることが推定された。このように、得られた磁場分 布から電流源を推定する逆問題を解くことにより、不整 脈での局在する電流源の位置と大きさを明らかにするこ とができる。これらは、カテーテル治療などでの治療部 位の事前検討や、治癒効果の判定に使われることが期待

図4 不整脈の解析例 不整脈(期外収縮)の早期興奮部位の場所を推定でき、MRI画像 と重ね合わせて表示することにより、解剖学的位置を直読するこ とができる。

図5 虚血性心疾患の解析例 等積分図により、心筋に流れたトータル電流の分布を画像化で きた。この図から、虚血による再分極過程(*ST-T*)での電流分布の 異常が起こっていることがわかる。

75

日立評論 (2000-9)

図6 胎児心磁図の例

心電図では検出しにくかった胎児の電気生理学的現象を、心磁 図でとらえることができるようになった。

4.4 胎児の心磁

胎児の心臓の電気現象を測定し, 心臓の発達状態を知 ることは、胎児の健全な育成に有用である。心磁計測を 用いることにより、在胎24週以降から電気絶縁層となる 胎脂の影響をまったく受けずに心磁を測定することがで き、胎児と母体にとって無害であることから、磁気セン サの高感度化に伴い, 最近, 胎児心磁の研究が行われは じめた。

モニタリング, 胎児の出生時診断などの分野で普及して いく可能性がある。だれでも容易に検査を受けることが でき,初期段階での病気の発見や適切な治療計画の立案 に貢献できるように,今後もさらに研究を進めていく考 えである。

終わりに、この報告では、筑波大学と国立循環器病セ ンターの関係各位から多くの臨床データをご提供いただ いた。ここに深く感謝の意を表する次第である。

参考文献

- 1) K. Yokosawa, et al.: Low-Tc SQUIDs with a Built-in Heater Module to Remove Flux Trapping, Superconductor Science and Technology, 13, pp. 1286-1291 (2000)
- 2) K. Tsukada, et al. : A Simplified Superconducting Interference Device System to Analyze Vector Components of a Cardiac Magnetic Field, Proceedings of 20th Int. Conf. IEEE/EMBS(Hong Kong), pp.524-527 (1998)

64チャネル心磁計によって計測した健康な胎児の心磁 波形を図6に示す。明りょうなQRS波が観測されている だけでなく、T波も検出されている。わかりやすくする ために、同図では1チャネルの波形だけを拡大して表示 している。また、胎児の心磁の検出効率を高めるために, 胎児と磁気センサを近づけ,母体の腹部の形状に合わせ て最も強い磁場成分を計測できるようにした胎児専用機 などの研究開発を進めている。

胎児心磁図により,乳幼児突然死症候群の主原因と考 えられているQT延長症候群を世界で初めて検出するこ とに成功したが。この研究は今後、新たな胎児診断方法 として発展していくものと考える。

おわりに 5

76

ここでは、 心磁図による心臓疾患診断のための最新の 心臓磁場計測システムについて述べた。

最近, 心磁図の研究は、わが国のほか、ドイツやフィ ンランドでも盛んに行われてきている。しかも, 心磁計

- 3) K. Tsukada, et al. : An Iso-integral Mapping Technique Using Magnetocardiogram, and Its Possible Use for Diagnosis of Ischemic Heart Disease, The International Journal of Cardiac Imaging, 16, pp. 55-66 (2000)
- 4) H. Hamada, et al. : Prenatal Diagnosis of Long QT Syndrome Using Fetal Magnetocardiography, Prenatal Diagnosis, 19, pp. 677-680 (1999)
- 5) A. Kandori, et al. : A Vector Fetal Magnetocardiogram System with High Sensitivity, Rev. Sci. Instrum., 70, pp. 4702-4705 (1999)

執筆者紹介

塚田啓二

1982年日立製作所入社,中央研究所メディカルシステム部 所属 現在,生体磁気計測システムの開発に従事 工学博士 IEEE会員,応用物理学会会員,日本エム・イー学会会員 E-mail: ktsukada @ crl. hitachi. co. jp

横澤宏一

1986年日立製作所入社,中央研究所 ライフサイエンス研 究センタ メディカルシステム研究部 所属 現在, 心磁計および超伝導デバイス(SQUID)の研究開発 に従事 工学博士 応用物理学会会員 E-mail : yokosawa @ crl. hitachi. co. jp-

神鳥明彦

1990年日立製作所入社,中央研究所メディカルシステム部 所属 現在,生体磁気計測,磁気共鳴イメージングの研究開発 に従事 工学博士 日本エム・イー学会会員,電子情報通信学会会員

E-mail : kandori @ crl. hitachi. co. jp

測の工学的発表にとどまらず, 臨床研究が多く報告され るに至っている。このため、今後は、他の検査では得ら れない知見が多く明らかにされていくことが期待される。 心磁計測は, 被験者に侵襲性がない検査方法として, ル ーチン検査や術前の治療計画の支援,術後の治療判定の

笹渕 仁 1971年日立製作所入社, 計測器事業部 医用システム設計部 所属 現在, 生体磁気計測システムの開発に従事 日本生体磁気学会会員 E-mail : sasabuti @ cm. naka. hitachi. co. jp