

i-engineering:日立製作所が創造する技術の総合マーケット

ナノメートル対応の分析評価技術

Nanometer-Scale Analyses and Evaluation Technologies

Takashi Aoyama 百生秀人 青山 隆 平野辰巳 Tatsumi Hirano 砂子沢成人 鍛示和利 Kazutoshi Kaji

Hideto Momose Shigeto Isakozawa

ることで、電子顕微鏡像を観 察しながら,元素分布像も同 時にリアルタイムで観察でき る。観察対象の元素を途中で 切り替えることにより, 複数 の元素分布の位置関係を精密

半導体の微細化や磁気ディスクの高記録密度化などに伴い、極微小領域や極薄膜で元素分析や化学結合状態を分析し、また、 反応層などの膜構造を評価したいというニーズが急速に高まっている。電子顕微鏡に電子のエネルギー分光計を付加した装置 であるエネルギーフィルタ電子顕微鏡とX線反射率解析により、これらの要求にこたえることが可能である。

具体的には、1 nmの分解能で二次元の元素分布や化学結合状態を評価でき、また、膜厚は0.5 nmまで、膜数は10層以上の多 層薄膜構造での膜厚・界面幅・密度を評価することが可能である。これらの分析評価技術は、各種不良解析や新規製造プロセ スの早期立ち上げに貢献している。

はじめに

近年,半導体や磁気ディスクなどの先端電子デバイス では、その集積度や記録密度の向上には目をみはるもの がある。従来,半導体素子の不良に関しては,その不良領 域の元素分析を行うことで大部分の不良原因の解明が可 能であった。しかし、近年の半導体微細化は化学反応起 因の不良を増加させ,元素分析だけでなく,化学結合評 価が不良原因の解明に欠かせなくなってきている。一方,

以上のような評価のニーズに対しては、(1)電子顕微 鏡に電子のエネルギー分光計を付加した「エネルギー フィルタ電子顕微鏡」と呼ばれる装置と、(2)膜の屈折率 の違いによって膜界面で反射するX線を利用する、反射 率法を用いる技術がきわめて有力な手立てを与える。電 子顕微鏡に関しては、従来、高度のテクニックと長時間 観察が必須であったが、最近、迅速かつ簡便な分析評価 ができる装置も市販されるようになった。

ここでは、ナノメートル対応の分析評価技術における

薄膜磁気ヘッドでは、その構造はますます極薄膜・多層 構造となる傾向にある。高感度のヘッド開発や成膜プロ セスの検討では,多層膜の膜厚,界面幅,密度を非破壊 で精度よく評価する技術が求められる。また、分析評価 自体を迅速、かつ簡便に行いたいとの要望も大きい。

コラボレーション(協同)について述べる。

2.1 エネルギーフィルタ電子顕微鏡 電子顕微鏡では,従来,微小領域での構造を観察する

23

ことが主体であったが、近年、元素分析や化学結合観察 も可能になってきた。エネルギーフィルタ電子顕微鏡は、 透過電子顕微鏡の下に電子のエネルギー分光計(エネル ギーフィルタ)を取り付けたものである(図1参照)。電子顕 微鏡の電子銃から放出された電子線が試料に衝突する と、試料を構成する各元素の内殻の電子を励起する。こ れによって電子線はこの励起エネルギー分だけエネルギ ーを失い、減速する。励起エネルギーは各元素に固有の 値を持つことから、その値に等しいエネルギーを失った 電子線だけを集めてカウントすれば、その領域にどの元 素がどれだけ存在するかがわかる。また、元素の種類は 同じでも、結合状態が異なると、内殻電子の励起エネル ギーが少し変化する。この励起エネルギーの変化を計測 することにより、結合状態の分析が可能となる。

微小領域の計測例として,NiFe(パーマロイ)とCrの 積層膜試料をスパッタリング法で作成し,断面方向の観 察を行ったものを図2に示す。Crの膜厚は、3 nm、2 nm、 1 nmと変化させてある。従来の電子顕微鏡では積層膜構 造はほとんど観察できない。しかし、Crのエネルギー フィルタを用いることにより、積層膜構造が明りょうに 見られ、さらに、3層が異なった膜厚で観察されること から、元素分布の検出は1 nmの空間分解能で可能である ことがわかる。

図2 極微小領域の膜構造と元素分布像

NiFeとCrの積層膜でCrの膜厚を3nm, 2nm, 1nmと変化させ, 断面試料を作成した。電子顕微鏡像では積層構造はほとんど見ら れないが,元素分布像ではCrの領域が明るくなり, 1nmの空間分 解能も確認できる。

磁気ディスク材料を模擬したCrCo多結晶材料の分析 結果を図3に示す¹。明るさ表示で元素濃度を表示してあ

24

図3 二次元元素分布の定量的な検出例

この材料では、結晶粒内にCoが、結晶粒界にCrがそれぞれ偏析 している様子が明りょうにわかる。

り,明るい部分はCr濃度が大であり,暗い部分はCo濃 度が大であることを示す。この材料では,結晶粒内にCo が,結晶粒界にCrがそれぞれ偏析している様子が明りょ うにわかる。

化学結合状態観察に関しては、シリコン基板上にシリ コン酸化膜と窒化膜、および酸窒化膜を堆(たい)積させ、 この試料を断面方向から観察分析評価した結果を23ペー ジの図(c)に示す²⁾。いずれの領域でもシリコン元素が存 在しているが、化学結合状態が明りょうに変化している 様子がスペクトルの違いから観察できる。一次元方向の 観察では任意領域をスペクトルに変換することができる ことから、化学結合状態の違いは1 nmの空間分解能で観 察が可能となる。化学結合状態を二次元分布で観察する ことも可能である。

図1 エネルギーフィルタ電子顕微鏡の概略構造と元素分布 像観察の原理

透過電子顕微鏡の下に、磁場セクタとエネルギースリットから 成るフィルタを取り付けることにより、二次元元素分布の観察が 可能となる。電子が各元素と衝突して失うエネルギーは一定であ るため、エネルギーウインドをこの値に設定し、特定の電子だけ で結像させると、この像が特定の元素分布像となる。 以上はTEM (透過電子顕微鏡)を用いた例であるが, 最近, STEM (走査透過電子顕微鏡)を用いることによ り,元素分布をリアルタイムで簡便に観察できるように なった[23ページの図(b)参照]³⁾。4 MビットDRAM (Dynamic Random Access Memory)の断面での窒素と 酸素の分布結果を同図(b)の(i)と(ii)に示す。これらの 元素分布が1~2nmの分解能で分布している様子がわか る。これらの観察はリアルタイムで行うため,観察途中 で対象とする元素を変更することも可能である。観察対 象元素を酸素から窒素に変え,再び酸素に戻した結果を 同図(b)の(iii)に示す。この場合,窒素分布は酸素分布 の内側にある様子が明りょうにわかる。すなわち,個々 の元素分布がそれぞれ1nm分解能で観察できるだけでな く,二つ以上の元素が互いにどのような位置関係で存在 するかを明確にすることが可能となった。

2.2 2波長X線反射率技術

積層膜に入射した光は,表面や界面で反射し,それら は互いに干渉しあう。入射角を変化させると、膜中での 光路長が変わり、反射強度に強弱が表れる(図4参照)。 この現象は、眼鏡レンズやブラウン管の反射防止膜に応 用されている。一方,この反射強度を詳細に解析すると, 積層膜の膜厚や密度,界面での凹凸高さ(界面幅)などの 積層構造が決定できる。さらに、入射光に可視光よりも 波長の短いX線を用いることにより、膜厚が数ナノメー トルまでの積層構造が解析できる。しかし、従来のX線 反射率法では、磁性と非磁性層から成るGMR(Giant Magnetoresistive) 膜の解析には適用できないという問題 があった。これは、隣り合う膜の電子密度が同程度であ ることから、界面で反射するX線強度が極端に低下する ためである。この問題を解決するために、界面で反射す るX線強度は電子密度だけでなく、X線の波長にも依存 することに着目し、(1)特別なX線波長を利用すること によって反射強度を高め⁴⁾, (2) 複数のX線波長で測定 した反射率を同時に解析するがなどのアイデアにより、

サブナノメートルまでの膜厚評価を可能とした。

GMR膜の模擬試料を三つの波長で測定した反射率(点線)と、膜厚・界面幅・密度などのフィッティングパラ メータを最適化した計算シミュレーションの反射率(実線)を図5に示す。両者はよく一致しており、解析結果の 精度が非常に高いことを示している。挿入図にRuの膜厚 を変えた試料の解析結果を示す。Ruの設計膜厚と解析 膜厚はよい直線関係にあることがわかる。これは、解 析結果が正しいだけでなく、ほぼ設計どうりにサブナノ メートルでの成膜が実現されていることを示している。 同図で示した解析結果の一部を表1に示す。サブナノメ ートルの膜厚だけでなく、密度と界面幅まで高い精度で

図5 反射率の測定と計算の比較,およびRuの設計膜厚と解 析膜厚の比較

測定反射率とシミュレーション(計算反射率)が一致するように 膜厚・界面幅・密度パラメータを決める。三つの波長で測定した 反射率と計算は非常によく一致しており、高い精度で数値が決定 できる。挿入図では、設計どおりにサブナノメートル単位で成膜 が実現されていることを示す。

表1 GMR膜の解析結果

図5で示した解析結果の一部を示す。サブナノメートルの膜厚 だけでなく、密度と界面幅まで高い精度で解析できる。

図4 X線反射率法の原理

X線反射率法は、表面と界面から反射したX線の測定(反射率)と 計算シミュレーションから膜構造を決定する手法である。従来の 反射率法ではGMR膜の評価は困難であったのに対し、この方法で は特別なX線波長を利用し、しかも複数の波長を用いることによ り、高い精度の評価を実現した。

積層膜	設計膜厚 (nm)	反射率の解析結果		
		膜厚 (nm)	密度 g/cm ³	界面幅 (nm)
u-CoFe1	1.5	1.37	8.39	0.48
Ru	0.4	0.50	12.10	0.59
u-CoFe2	2.0	1.75	8.39	0.56
Cu	2.3	2.15	8.77	0.56

25

表2 2波長反射率の解析性能

積層膜構造に関して、膜の数は15層、最小膜厚は0.5 nm、精度 は0.05 nmで膜構造を決定できる。

解析が可能な積層数	最小膜厚	精度
15	0.5 nm	0.05 nm

表3 X線反射率による膜厚評価の適用分野

極薄膜を積層した多層膜は、広い分野で利用されている。その 特性を支配する膜厚の評価は、この技術の依頼分析によって容易 に実現できる。

分野	製品	積層膜評価	
磁気ディフク	ヘッド	GMR膜	
1000 21 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	記録媒体	磁性層, 潤滑膜	
半诸休	DRAM, LSI	キャパシタ膜	
十夺仲	光デバイス	GaAs, GaN膜	
ディフプレイ	液晶	TFT素子	
712701	CRT	反射防止膜	

注:略語説明 TFT (Thin Film Transistor)

解析できることがわかる。この技術は、極薄・多層化が進 む高感度GMRヘッドの開発で大きな効果を発揮して いる。

て、必要なデータを迅速に取得することも将来の一つの 方向である。そのためには、分析評価装置の簡易操作化 が必要となる。電子顕微鏡分野で日立製作所が製品化し たSTEM"HD-2000"では、SEM並みの操作で、TEM(透 過電子顕微鏡)並みの高性能を実現した。「エレメンツ ビュー」と呼ばれている専用のエネルギーフィルタと組み 合わせることにより, 簡単な操作で精密な元素分布観察 が可能である。

参考文献

- 1) K. Kimoto, et al. : Japanese Journal of Applied Physics., 34, L352(1995)
- 2) K. Kimoto, et al. Journal of Electron Microscopy, 46, 369(1997)
- 3) K. Kaji, et al. : Journal of Electron Microscopy, 50, 111 (2001)
- 4) T. Hirano, et al. : Journal of Synchrotron Radiation, 5,

分析評価の活用例 3

薄膜磁気ヘッドの製造ラインでは、金属薄膜の膜厚管 理として、簡便な蛍光X線分析法が従来用いられてきた が, 膜厚の絶対値の評価ができないことと, 長期間で膜 厚結果が変動するという課題があった。そのため、上述 した2波長X線反射率法によって膜厚の絶対値を評価し、 蛍光X線分析法による結果を随時校正することにより, これら二つの課題を解決することができた。2波長反射 率法の解析性能を表2に示す。最小膜厚0.5 nm, 精度は その
も
と
いう
高い
性能を
実現して
いる。
極薄膜を
積層し た多層膜は、広い分野で利用されている(表3参照)。こ れら多層膜を利用したデバイスの特性は, 積層構造に強 く依存している。このため,上述した膜厚評価技術の導 入や迅速な依頼分析により,高性能デバイスの早期立ち 上げや高度な成膜工程の制御, 歩留りの向上, コストの 低減などが期待できる。

26

ここでは、ナノメートル対応の分析評価技術と日立製作

- 969(1998)
- 5) 宇佐美, 外:日本応用磁気学会誌, 24, 551(2000)

執筆者紹介

青山 降 1977年日立製作所入社, 日立研究所 電子材料研究部 所属 現在,電子顕微鏡用分光計の開発とその応用研究に従事 理学博士 応用物理学会会員,日本電子顕微鏡学会会員,日本化学 会会員

E-mail: aoyama @ hrl. hitachi. co. jp

平野辰巳

1986年日立製作所入社, 日立研究所 電子材料研究部 所属 現在,X線技術の開発とその応用研究に従事 日本応用磁気学会会員,日本放射光学会会員 E-mail: hirano @ hrl. hitachi. co. jp

鍛示和利

1986年日立製作所入社,日立研究所 電子材料研究部 所属 現在, 走 査 透 過 形 電 子 顕 微 鏡 用 分 析 器 の 研 究 開 発 に 従 事 工学博士 応用物理学会会員,日本電子顕微鏡学会会員,日本化学 会会員, 電気化学協会会員 E-mail: kkaji @ hrl. hitachi. co. jp

百生秀人

1988年日立製作所入社, 日立研究所 電子材料研究部 所属 現在,電子顕微鏡とX線技術の応用研究に従事 応用物理学会会員,日本分光学会会員 E-mail: momose @ hrl. hitachi. co. jp

所が提供するコラボレーションサービスについて述べた。 今後、電子・磁気・光デバイスでは微小化と薄膜化が 進むことは明らかであり、分析領域のいっそうの微小化 と薄膜化が要求される。 プロセスエンジニアみずからが分析評価装置を操作し

1973年日立製作所入社, 計測器グループ エレクトロニク 現在,電子顕微鏡とその分析器の研究開発に従事 日本電子顕微鏡学会会員, 日本分析化学会会員 E-mail: shigeto-isakozawa @ instr. hitachi. co. jp