最先端半導体デバイスの量産を支えるベストソリューション

Vol.85 No.4 305

サブナノメートル領域の故障解析を 実現する半導体デバイス評価システム

New Semiconductor Device Evaluation System for Sub-nanometer Area Failure Analyses

上野武	代夫	Takeo Kamino	梅村	馨	Kaoru Umemura	鍛 示 和 利	Kazutoshi Kaj
大西	毅	Tsuyoshi Ônishi	朝山匡-	一郎	Kyôichirô Asayama		

新開発の半導体デバイス評価システムを構成する集束イオンビーム加工装置"FB-2100"(a)と超薄膜評価装置"HD-2000"(b)

最高加速電圧40 kVのFB-2100と加速電圧200 kVのHD-2000を組み合わせた新開発の半導体デバイス評価システムでは、半導体デバイスの故障個所の探索からサブナノメート ル領域の構造解析までを数時間で行うことができる。

半導体デバイスの急速な微細化,高機能化,高信 頼化により,不良解析に用いられる観察技術(TEM, SEM)には、きわめて高度な空間分解能と操作性が求 められている。これにこたえるため、日立グループは、 集束イオンビーム加工装置と走査透過電子顕微鏡方 式の超薄膜評価装置を組み合わせた「半導体デバイ ス評価システム」を開発した。

集束イオンビーム加工装置では,粗加工と仕上げ 加工を両立させるために,加速電圧を10~40 kVの範 囲で可変にした。超薄膜評価装置では,試料の構造 情報と組成情報を多角的に取得するために,観察用 として明・暗視野透過電子検出器と二次電子検出器 を、分析用としてエネルギー分散型特性X線検出器と 実時間軽元素分布像観察装置をそれぞれ備える。これ により、原子レベルの微細構造観察と、サブナノメー トル領域の軽元素分布像が実時間で観察できるよう にした。試料ホルダは、両装置に共用できる。さらに、 デバイス中の任意の解析個所から観察試料を直接摘 出する「マイクロサンプリング法」の新たな開発により、 100 nm以下の高位置精度での試料摘出からその評 価までを、4~5時間で行えるようにした。

な粒子線が用いられている。いずれも,粒子線と材料との相 互作用を利用して材料の構造や組成,化学結合状態などを 調べるものであるが,粒子線の種類によって相互作用の内容 や得られる情報が異なる。例えば,光を用いた観察は基板結

晶中の不純物探索に,高速イオンやX線を用いた分光法は 基板・金属のヘテロジニアスな界面などの評価に,二次イオン を用いた分析法は微量不純物の分析に,そして,レーザ光 を用いたラマン分光法は材料内部の応力解析などにそれぞ れ応用されている。

しかし、それらのほとんどは空間分解能がサブマイクロメートルから数マイクロメートル程度にとどまることから、サブナノメートル領域の微細構造評価には、走査電子顕微鏡または透過 電子顕微鏡が多く用いられている。中でも、原子レベルの高 分解能観察が可能な透過電子顕微鏡は、100 nmプロセス の評価では最も期待が大きい評価装置の一つである。しかし、 透過電子顕微鏡を十分使いこなすにはかなりの経験が必要 であるため、簡単な操作で透過電子顕微鏡並みの分解能が 得られるデバイス評価装置の開発が強く望まれている。また、 透過電子顕微鏡レベルの高い分解能で構造評価を行うに は、解析個所から薄膜試料を作製する必要がある。デバイス の薄膜試料作製に一般的に用いられてきた集束イオンビーム 加工法では、薄膜加工の位置精度は200~300 nmが限界 であり、100 nmノード以下の微細構造評価のための薄膜試 観察できる, 走査イオン顕微鏡像を用いる方法である。しかし, この方法では, イオンビームをプローブとして用いるので, 試 料がイオンビーム照射損傷を受ける。このような走査イオン顕 微鏡像観察の問題を解決する手段として, 集束イオンビーム 加工装置と薄膜評価装置を組み合わせた評価システムを開 発した。

この評価システムの主な構成を図1に示す。

試料加工には集束イオンビーム加工装置"FB-2100"¹⁰を, 観察には走査透過電子顕微鏡方式の超薄膜評価装置 "HD-2000"をそれぞれ用いる²⁰。集束イオンビーム加工装置 は,加速電圧を10~40 kVの広い範囲から選択できるように した。40 kVでは迅速な粗加工が,10 kVでは清浄な仕上げ 加工が可能で,これらを組み合わせることにより,清浄な薄膜 を迅速に作製できるようにした。

また,バルク試料から数マイクロメートルの厚さの微小試料 片(マイクロサンプル)を直接摘出するための「メカニカルプロー ブ」を新たに装備した³⁰。このメカニカルプローブの操作は高倍 率二次電子像を観察しながら行えるので,初心者でも容易に 試料を摘出することができる。これにより,これまで一般的に行

料作製には適用が難しい。

ここでは、このようなニーズにこたえるために日立グループ が開発した半導体デバイス評価システムの機能、特徴、およ び応用事例について述べる。

2 半導体デバイス評価システムの原理と 装置構成

半導体デバイス内部の解析個所を特定して薄膜化するためには、まず、その場所を正確に知る必要がある。その最も 一般的な方法は、集束イオンビーム加工装置内で加工中に われていた,精密カッタを用いる試料の切り出しを不要とした。

超薄膜評価装置には、加速電圧200 kVの高電圧冷陰極 電界放出型電子銃を搭載した。これにより、厚さ数マイクロメー トルのSiデバイス内部構造が明りょうに観察できるようになっ た。この装置の最小電子線プローブ径は原子レベルの高分 解能観察ができる約0.2 nmとし、高性能透過電子顕微鏡と 同等の微細構造解析を可能にした。また、試料から構造、組 成および状態に関する情報をできるだけ多く引き出すために、 明視野像用と暗視野像用の2種類の透過電子検出器と、二次 電子検出器の計3個の検出器を備えた。

さらに,分析用として,特性X線検出器と,実時間軽元素

Vol.85 No.4 307

分布像観察装置を備えた。これらの集束イオンビーム加工装置と超薄膜評価装置は、両装置に挿入できる共用試料ホル ダによって連結されているので、加工と観察を繰り返し行うことができる。

以上の装置構成から成る評価システムを完成することにより,100 nm以上の高い位置精度での迅速な薄膜試料作製と,サブナノメートルオーダー以下の極微小領域の構造,組成,および状態分析を可能にした。

3 試料作製と観察

3.1 解析個所からの試料摘出(マイクロサンプリング法)

この評価システムの集束イオンビーム加工装置を用いた試 料摘出法(マイクロサンプリング法)の手順概略を図2に示す。 最初に,集束イオンビーム加工時の試料汚染や損傷を防ぐた め,解析個所の上に金属デポジション(沈着)を施す〔同図(a) の矢印〕。次に,解析個所周辺を溝加工する〔同図(b)〕。そ の後,試料を傾斜させ,解析個所底部を切除する〔同図(c)〕。

図35µm角のピラー状に加工したDRAMのマイクロサンプル

円すい状の試料ステージ先端にマイクロサンプルを固定することにより,全方位か ら断面を観察することができる。

すい状の試料ステージに固定してある。そのため,全方位からの断面観察がしやすく,故障個所を短時間に探し出すことができる。

さらに、マイクロサンプル運搬用メカニカルプローブを解析個 所上部に接触させ、これを金属デポジションによって接着する 〔同図(d)〕。メカニカルプローブの接着後、未加工部を切除 し、マイクロサンプルを摘出する〔同図(e)〕。マイクロサンプル の大きさは、通常、幅が10~15 μm、厚さが3~5 μm、深さ (高さ)が10~15 μmであり、摘出所要時間は約1時間である。

上述の方法で加工したDRAM(Dynamic Random Access Memory)のマイクロサンプルを図3に示す。試料は 約5 μm角のピラー状に加工し、先端を平たんに加工した円

3.2 マイクロサンプルの観察

走査透過電子像は,多段の透過像拡大レンズを持つ透過 電子顕微鏡の像と比べて色収差の影響が少ない。このため, 透過電子顕微鏡よりも厚い試料の観察ができる。この評価シ ステムでは,その走査透過電子顕微鏡の特徴を利用した故 障個所の探索を行っている。約2 µm角のピラー柱状に加工 したDRAMのマイクロサンプルを加速電圧200 kVで観察し た走査透過像と二次電子像を図4に示す。これらは同じ試 料を同じ方向から観察したものであるが,それぞれ異なった

図2 解析個所からの試料摘出手 順(マイクロサンプリング法)

数ミリメートル角に切り出した半導体 デバイスから,解析個所を含む微小試 料(マイクロサンプル)を直接摘出する。 集束イオンビームの走査形状を変えるこ とにより,さまざまな形状の試料が摘出 できる。

図4 2 μm角のピラー状に加工し たDRAMマイクロサンプルの走 査透過像(a)と二次電子像(b)

(a)の走査透過像ではキャパシタの微 細構造や2段の配線が、(b)の二次電子 像では90度異なった2方向からのキャパシ タ断面構造がそれぞれ立体的に観察で きる。

情報が得られる。走査透過像ではキャパシタの微細構造と上下2段に配置された配線の位置関係が,二次電子像では90度異なった方向から見たキャパシタ,配線およびコンタクトの断面微細構造が,それぞれ立体的に観察されている。故障解析の場合は,このような厚い試料の観察から開始し,故障個

工する〔図5(a)〕。加工後, 試料を超薄膜評価装置に移動 し, 走査透過像観察〔同図(b)〕と両断面の二次電子像観察 〔同図(c)〕を行い, さらに詳しく故障個所の特定を行う。その 後, 試料を再び集束イオンビーム加工装置に戻し, 追加工を 行う。このような集束イオンビーム加工と走査透過電子顕微鏡

所の追加工と観察を交互に行いながら,解析を進める。

3.3 解析個所の探索とその薄膜加工法

故障個所がサブミクロン以下の小さな構造の場合は、その 個所を見失わずに、しかも、イオンビーム照射損傷を与えずに 薄膜加工しなくてならない。これは、通常のイオンビーム加工 法ではきわめて困難な作業である。この評価システムは、その ようなニーズにこたえることを目的として開発したものである。 その方法の概念を図5に示す。図4に示した観察で故障個 所のおおまかな位置が判明したら、試料を厚さ3~5 μmに加

観察を繰り返し,最終的に解析個所を0.1 µm以下の厚さに 薄膜化する〔同図(d)〕。

3.4 薄膜試料の微細構造観察

上述の方法で作製したDRAMゲート部薄膜試料の高分 解能走査透過像観察例を図6に示す。試料の厚さは約 60 nmで,観察は加速電圧200 kVで行っている。Si基板結 晶の(110)面に電子線を垂直に入射しており,Si基板内には 間隔0.314 nmのSi(111)面の結晶格子像が鮮明に観察され ている。また,同様の間隔を持つ結晶格子像がゲート(多結 晶)部にも鮮明に観察されている。一般に,集束イオンビーム 加工法で作製した薄膜試料はイオン照射損傷を受け,原子

図5 解析個所の探索と薄膜加工手順

数マイクロメートルの厚さに加工した試料(a)を走査透過電子顕微鏡に移動し, 解析個所の位置設定を行う〔(b),(c)〕。位置設定後,マイクロサンプルを集束イオ ンビーム加工装置に戻し,加工する。これを繰り返し行うことにより,最終的に解析 個所を0.1 µm以下まで薄くする〔(d)〕。

図6 評価システムを用いて薄膜化したSiデバイスゲート部の高分 解能走査透過像観察例

試料は約60 nmの厚さにまで薄膜化してある。Si基板とゲート部では、0.314 nm 間隔のSi(111)面の結晶格子像が鮮明に観察できる。

サブナノメートル領域の故障解析を実現する半導体デバイス評価システム

Vol.85 No.4 309

レベルの高分解能観察は困難と言われてきたが,この評価 システムを用いて作製した試料は損傷なく薄膜化されている。 装置では,選択した元素からの電子線信号と背景の信号を 同時に取り込めるように,スペクトロメータ(分光計)の後方に2 個の電子検出器を備えている。それらの信号強度比率(^L/_L)

3.5 実時間軽元素分布像観察機能

半導体デバイスの解析では,酸化膜や窒化膜で構成され る絶縁膜の形状や厚さの評価は不可欠である。絶縁膜の観 察にはエネルギー分散型のX線分光器や電子線エネルギー 損失分光器が用いられるが,それらの方法では,1枚の画像 観察に数十分以上の時間を要する。その解決手段として, 実時間軽元素分布像観察装置を開発した(図7参照)。この

を輝度信号に変え,走査電子線に同期させて表示する機能 により,実時間での軽元素分布像観察を可能にした。この装 置の開発により,1枚の元素分布像観察に要する時間を,従 来の数分の1から数十分の1に短縮した。

3.6 絶縁膜の観察

実時間軽元素分布像観察装置を用いてSiデバイス中の絶 縁膜を観察した例を図8に示す。この観察では、試料入射電 子線を走査しながら、酸素一窒素一酸素と取り込みの元素 を変えている。SiO膜—SiN膜—SiO膜の形状、厚さ、および 相互の位置関係が明りょうに観察されている。観察に要した 時間は80秒である。

実デバイスへの応用

この評価システムを,日立製作所のSHマイコンのCoSi拡 散層の微細構造評価に応用した。CoSi拡散層近傍の低倍 率断面走査透過像を図9に示す。試料の厚さは約0.5 µmと 薄くしてある。その拡大像を図10に示す。CoSi拡散層直下 のSi基板内部に異常コントラストが現れている。この部分を保 存した状態で試料を約60 nmの厚さまで薄膜化し,高倍率断 面走査透過像を観察した(図11参照)。Si基板内には, 0.314 nm間隔のSi(111)面の結晶格子像が鮮明に観察され ている。この高分解能走査透過像の観察により,CoSi拡散 層下部の異常コントラストが結晶欠陥に起因することと,結晶 欠陥はSi(111)面上に発生しており,その長さが約20 nmで あることを明らかにした。

図8 実時間軽元素分布像観察装置を用いて観察した絶縁膜の例 試料入射電子線を走査中に,酸素,窒素,酸素と取り込みの元素を変えている。 SiO膜とSiN膜の形状や厚さが鮮明に観察できる。

図9低倍率断面操作によるSHマイコンの透過像の例 Si基板上部の暗い層がCoSi拡散層である。

おわりに

ここでは,集束イオンビーム加工装置と超薄膜評価装置を 組み合わせた半導体デバイス評価システムの機能,特徴,お よびデバイス故障解析への応用事例について述べた。

このシステムの特徴は、100 nm以下の位置精度での薄膜 試料作製機能と、原子レベルの微細構造解析機能である。

日立グループは,今後も最先端の半導体デバイス製造に 貢献していくために,100 nm以下のプロセスに対応できる評 価技術のいっそうの向上を図っていく考えである。

参考文献

- T. Kamino, et al. : A Newly Developed FIB System for TEM Specimen Preparation, Microsc. Microanal. 8(2002)
- T. Kamino, et al. : Recent Development in Failure Analysis in an Ultra Thin Film Evaluation System, Microsc. Microanal. 6 (2000)
- 3)上野,外:FIBを用いたナノテク材料のピンポイント解析,表面技術,

執筆者紹介

図10 SHマイコンのCoSi拡散層の断面走査透過像 CoSi拡散層直下のSi基板内部に異常なコントラストが現れている。

第53卷, 第12号(2002)

上野武夫

1963年日立製作所入社,株式会社日立サイエンスシステムズ 那珂カスタマーセンタ 所属現在,電子顕微鏡応用技術の開発に従事日本顕微鏡学会会員E-mail: kamino-takeo @ naka. hitachi-hitec. com

大西 毅

1985年日立製作所入社,株式会社日立ハイテクノロジーズ 設計・製造統括本部 那珂事業所 エレクトロニクスシステム 第1設計部 所属 現在,集束イオンビーム加工装置の開発に従事 日本顕微鏡学会会員 E-mail: onishi-tsuyoshi@ naka. hitachi-hitec. com

梅村 馨

朝山匡一郎

1983年日立製作所入社,株式会社ルネサス テクノロジ 生産 技術本部 解析技術開発部 所属 現在,半導体加工プロセスの開発に従事 日本顕微鏡学会会員 E-mail:asayama.kyoichiro@renesas.com

図11 CoSi拡散層直下のSi基板内部に発生した結晶欠陥 欠陥はSi(111)結晶面上に発生しており、その長さが約20 nmであることを明らか にした。

1986年日立製作所入社,日立研究所 電子材料研究部 所属 現在,電子線計測技術の開発に従事 応用物理学会会員 E-mail:kkaji@gm.hrl.hitachi.co.jp

