
Harmonious Computingを支える ミドルウェアへの取り組み

Middleware Products for Achieving Harmonious Computing

久芳 靖 Yasushi Kuba

鞍掛 稔也 Toshiya Kurakake 尾山 壯一 Sôichi Oyama

注:略語説明 IP(Internet Protocol), QoS(Quality of Service)

ポリシーベースシステム

ポリシーベースの自律運用管理を用い、特定業務の負荷が増大した際にも、余裕のあるサーバやネットワークのリソースを負荷の高い業務に割り当てることにより、システム全体の 状態の最適化を図る。

情報がライフライン化した社会では、高品質な社会 サービスや企業が提供するサービスの高付加価値化 が求められる一方で、大規模化、複雑化するサービス プラットフォームへの投資の最適化が必要となる。

日立製作所は、オープンミドルウェアとファウンデー ションミドルウェアを中心とするポリシーベースの自律 運用管理により,システム運用コストの最適化を図っ

ている。また、サービスプラットフォームの各種資源の 統合管理や資源の仮想化により、迅速で柔軟な業務 構築とシステムのスケーラビリティの拡大,安定稼動 を実現する。さらに、これらをポリシーベース運用に組 み込むことで、サービスプラットフォームコンセプト Harmonious Computingで掲げる「発展」・「共創」・ 「信頼」の価値を顧客に提供していく。

はじめに

日立製作所のサービスプラットフォームコンセプト Harmonious Computingでは、IT基盤に立脚した、きめ細 かで高品質な社会・行政サービスや、付加価値を生み出すグ ローバル競争力の高い企業活動を支えるため,簡単な操作

と最適なコストで即座に利用できるシステム基盤の提供を目 指している。

このコンセプトの下に、オープンミドルウェアでは、社会サー ビスや企業の業務構築のための開発・実行・運用基盤を提供 するとともに、各種のファウンデーション(ハードウェア, OS)を ファウンデーションミドルウェアできめ細かく制御することで、プ ラットフォームへの投資を最適化する。さらに、これらを密に連 携させることにより、ミドルウェア全体として高信頼な情報システム基盤を実現する。

ここでは、Harmonious Computingの実現を目指す、日立製作所のミドルウェアへの取り組みについて述べる。

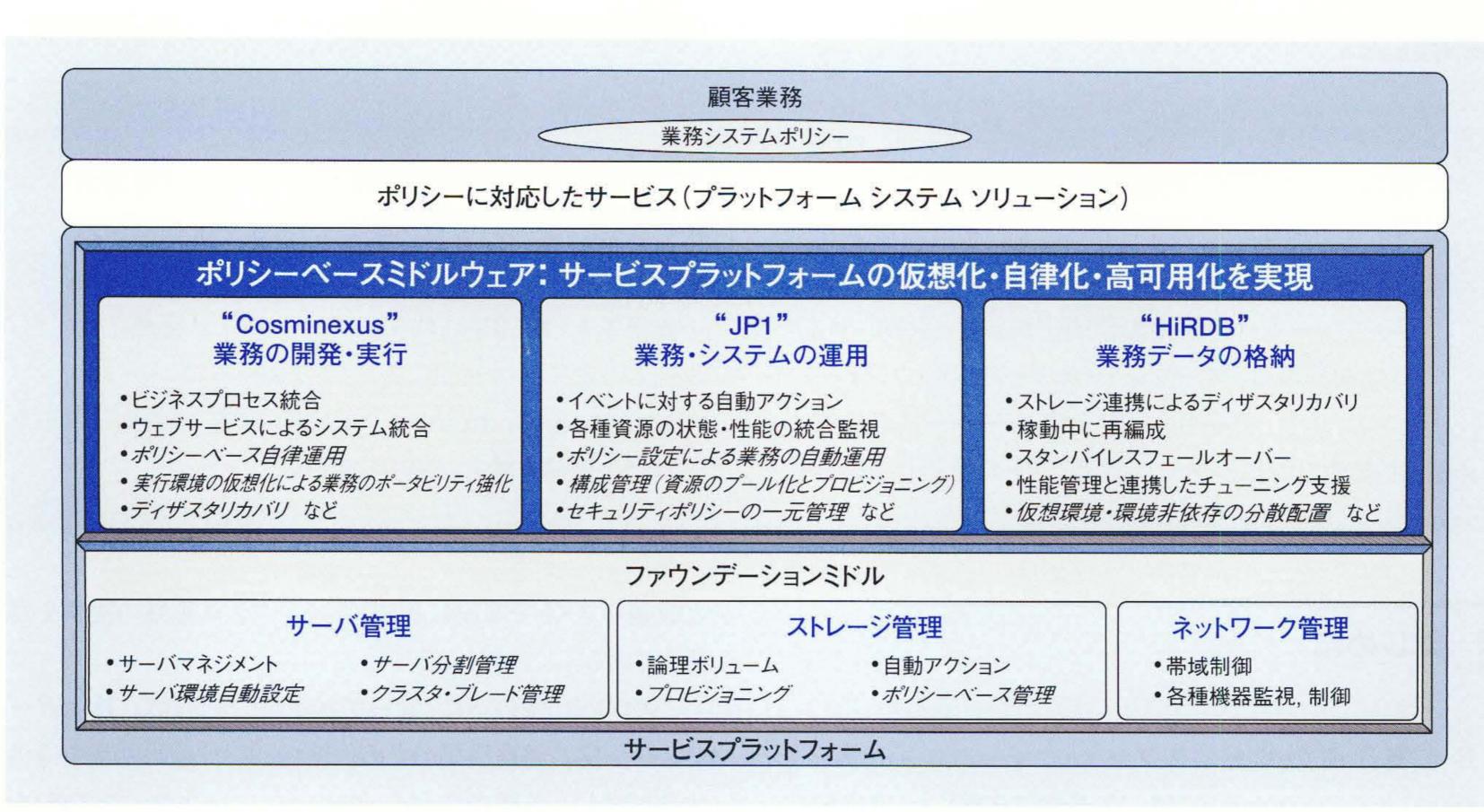
オープンミドルウェアにおける取り組み

2.1 ポリシーベースミドルウェアの機能

投資や人的資源をサービスや事業の中核部分に集中配置し、情報システム基盤への投資や運用コストを最適化できるように、オープンミドルウェアにより、顧客のビジネス方針に基づいたサービスプラットフォームの最適な動作と安定稼動を図る(図1参照)。

オープンミドルウェアが担う役割は、次のとおりである。

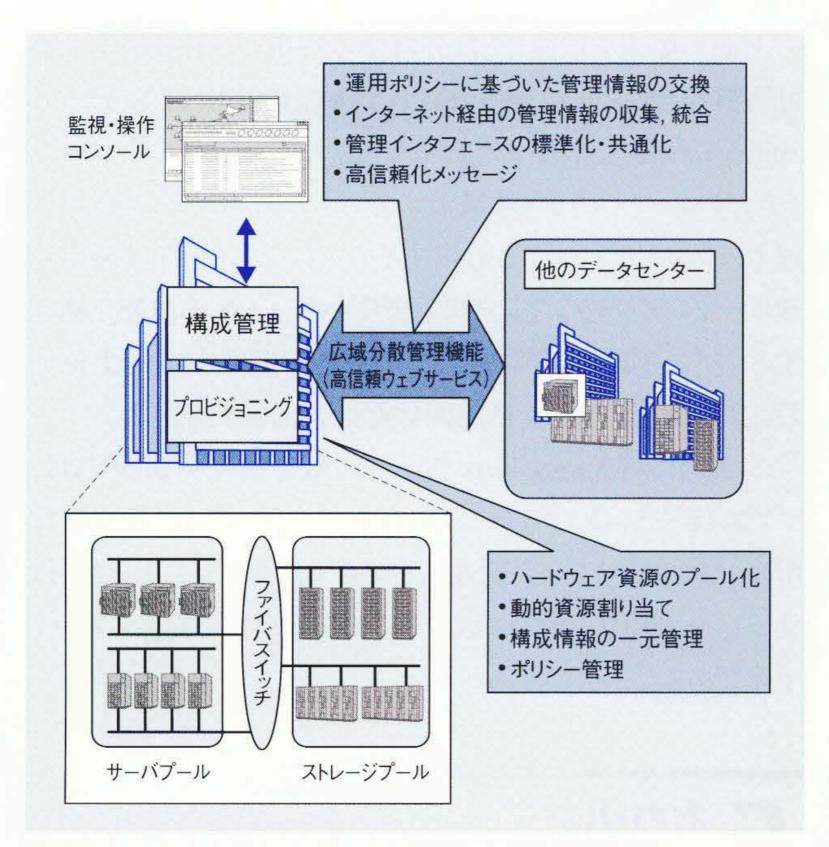
- (1) 一度構築した業務を, 顧客のビジネスや経済成長に合わせてすばやく拡大できるスケーラビリティを持った業務基盤の提供
- (2) ますます加速する社会やビジネスの変化に応じて、すばやく業務を連携できる柔軟性の高い業務基盤の提供
- (3) 業務アプリケーション開発者にはさまざまなファウンデーションの違いを意識させず,一方でファウンデーションの特性に応じた業務やデータを配置する最適資源割り当て
- (4) 障害や災害発生時の業務継続と、安全性の高い業務 環境の確保


2.2 ポリシーベース自律運用管理の機能

統合システム運用管理ソフトウェア"JP1"での自動運転と 各種資源の統合管理をさらに発展させ、サービスプラットフォーム全体の自律運用管理を目指す。

ビジネスポリシーをサービスプラットフォームに対応する要件 として具現化する、中長期および日常的な運用サイクルそれ ぞれにおいて、サービスレベル目的(システムポリシー)に基づ いた自律運用を図るため、オープンミドルウェアでは次の機能 を提供する(図2参照)。

- (1) 各種のハードウェア資源の構成とその特性を一元的に管理し、資源をプール化するとともに、論理的なハードウェア資源構成を提供する(構成管理)。
- (2) 業務アプリケーションを, 論理的なハードウェア資源構成に基づいて設計するとともに, 業務として必要なスケーラビリティと安定稼動の条件を, ポリシーとして記述できるようにする (実行管理)。
- (3) 業務アプリケーションを実行するために,実際のハードウェア資源から最適なものを選び,割り当てるとともに,OSやミドルウェアのセットアップなどを行い,必要な実行環境を生成する(プロビジョニング)。
- (4) 業務設計で定められたポリシーと, IT資源管理者が定めたポリシーにより, 稼動状況に応じて資源の動的割り当てを実施する(ポリシー管理)。
- (5) データセンター間での資源共用と、連携しているサービスの広域管理を図る(広域システム統合管理)。


これらの機能を組み合わせることにより、業務実行時の性

注1:略語説明 HiRDB (Highly Scalable Relational Database) 注2:イタリック表記は将来提供予定機能を示す。

図1 ポリシーベースミドルウェアの機能

オープンミドルウェアとファウンデーションミドルウェアの連携により、顧客のビジネスポリシーに基づいた業務の迅速な構築、自律運用、安定稼動を図る。

図2 ポリシーベース統合管理の概要

サーバ・ストレージのリソースを仮想化してセンター内を管理するとともに、広域へテロジニアスシステムの統合管理を行う(JP1などで実現)。

能変動や障害発生時にも、顧客の業務ポリシーに基づいた 資源の追加や代替が可能となり、最小限の運用コストで業務 の安定稼動が図れる。

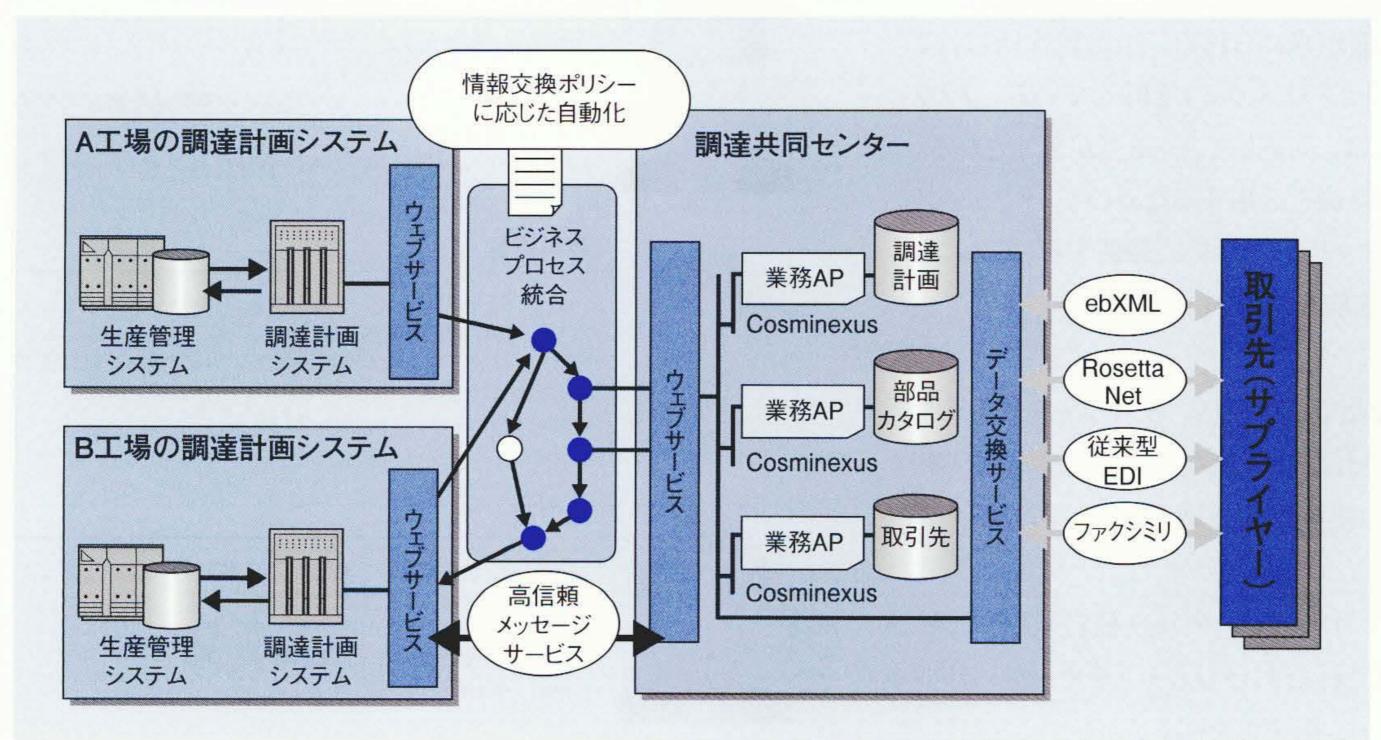
2.3 ウェブサービス・Eビジネス基盤の機能

業務アプリケーションの実行基盤であるウェブ アプリケーション サーバ"Cosminexus"と、統合データベース"HiRDB" などのオープンミドルウェアを発展させ、柔軟でスケーラビリティのある業務開発・実行基盤を提供する。

ウェブサービス・E(Enterprise)ビジネス基盤では、次の機能を提供する(図3参照)。

(1) ウェブサービスを使ったシステム間連携による企業の枠を越えたサービスの連携や、基幹システムのウェブサービス化

による既存資産活用を迅速に実行できるようにする〔ウェブサービス統合, BPI(Business Process-Based Application Integration)〕。


- (2) 開発・実行環境を仮想化することで、サーバやストレージ 資源の違いを意識せずに業務の構築を可能にするとともに、 実行時のスケーラビリティを実現する。
- (3) インターネット上でのサービス連携を確実にするための高信頼メッセージ基盤を提供する。
- (4) 業務のポリシーに基づくスケジュール自動運転や障害時の縮退運転,災害時のリカバリ運転を提供する(フェイルオーバ,ディザスタリカバリ)。
- (5) 前述の構成管理を利用した業務基盤と運用管理の密な連携により、業務に割り当てた各資源を関連づけて管理できるようにする(業務指向管理)。

3 ポリシーベースシステムを実現する 中核技術

3.1 オープン・デファクトスタンダード仕様

業務アプリケーションやサービスをオープン・デファクトスタンダードな仕様で連携できるようにするために、Cosminexusで提供しているJ2EE基盤に基づいた業務基盤を提供、発展させるとともに、XML/SOAP(Extensible Markup Language/Simple Object Access Protocol)をはじめとするウェブサービスを各オープンミドルウェア製品に順次実装していく。また、システムの構成情報を交換するための情報モデルとしてCIM(Common Information Model)を採用し、各種資源管理と論理業務モデルに適用する。

さらに、異なるハードウェア資産の活用が可能なオープンミドルウェアの概念を今後とも推進するとともに、各種デファクトスタンダード仕様の採用、標準化団体への提案を積極的に実施していく。

図3 ウェブサービスによるシステム統合例

ウェブサービスを利用して取引 先を含めた生産管理やサプライ チェーンを迅速に構築すること により、自動運用を図る。

注:略語説明

AP (Application Program)
ebXML (Electronic Business
Extensible Markup
Language)
EDI (Electronic Data
Interchange)

3.2 自動化・自律化

JP1で実績のある自動運転機能をベースに、サービスプ ラットフォーム全体の自律運用を目指す。

性能監視と予兆監視・分析機能に基づき、業務ポリシーに よる資源割り当ての自動実行のほか、あらかじめ予想される 負荷変動やシステムメンテナンスに対応する資源のスケジュー ル割り当てやスケジュール運転を可能とする。

さまざまなセキュリティ事象を統合管理することで、セキュリ ティ侵害を迅速かつ自動的に検知し、ポリシーに基づくサー バやネットワーク設定の変更や遮断を可能とする。

3.3 仮想化

各種のサーバやストレージなどのハードウェア資源を、その 特性に基づいて資源として管理(プール)し、業務基盤に提 供する。これにより、業務に影響することなく必要な資源が追 加できる。

また、 論理的な資源に対応して業務アプリケーションを設計 することにより、業務開発者は、業務のロジックやビジネスモデ ルの開発に専念することができるようになる。

3.4 統

分散配置された資源を効率よく運用し、かつビジネスの視 点からマネジメントを行うための基盤を提供する。ウェブサー ビスなどのための高信頼メッセージサービスや、セキュリティを 意識した運用管理プロトコルのウェブサービスなどを行うことに より、広域、ヘテロジニアス環境の統合に対応でき、さらに、 ビジネス視点での管理者向けビューを提供する。

ファウンデーションミドルウェアの

Harmonious Computingをシステム全体で実現するために は、オープンミドルウェアのほかに、ファウンデーション層をいっ そう細かく制御できる機能が求められる。日立製作所は、こ の機能層をファウンデーションミドルウェアと呼んでいる。ファウ ンデーションミドルウェアには、大別して次の3点が要求される。 (1) ファウンデーションの特徴を活用するためのインタフェース をオープンミドルウェアやアプリケーションに提供する。これによ り、ファウンデーションの性能や信頼性を最大限レベルまで引 き出す。

- (2) 実際の運用現場などで、サーバ、ネットワークスイッチ、 およびストレージが集約された群をシステムとして管理する際 の運用管理ミドルウェアの機能補完を果たし、いっそう細やか な制御を可能にする。
- (3) ファウンデーションのプロプライエタリー(独自)性をできる かぎり隠ぺいし、平準化されたインタフェースをオープンミドル ウェアに提供することにより、接続性を図る。

上記の要求を機能ごとに分解すると、障害・稼動管理、高 可用性などのRAS (Reliability, Availability, Serviceability)系機能と、ワークロード管理、リモート管理エージェン トなどのユーティリティ系機能に分けられる。これらは運用管 理オープンミドルウェアと重複するのではなく、一部は運用管 理オープンミドルウェアに取り込まれたり、一方ではOSを補完 するオペレーティング環境としての機能を提供したり、上位層 および下位層との相互補完関係を作りながら実現する。

このように、Harmonious Computingを実現するためには、 ファウンデーションミドルウェアの存在が必要となる。日立製作 所は、すでにストレージ関連製品を多く提供しており、今後は サーバやネットワークなどでもさらに対象を広げ、提供していく 予定である。

おわりに

ここでは、Harmonious Computingを実現するための、日 立製作所のミドルウェアへの取り組みについて述べた。

ミドルウェアを取り巻く市場環境、インターネットをベースにし た技術は今後も急速に進化し続けると考えられる。ここで述 べたHarmonious Computingへの取り組みは、「発展」・「共 創」・「信頼」という価値を顧客に提供するための目標の一端 であり、最終的なものではない。

日立製作所は、今後もマーケットニーズの把握に努め、製 品計画に反映していくとともに、 ウェブサービスの新しい仕様 や、グリッドコンピューティングなどの新しい技術を積極的に取 り込みながら、さらに付加価値の高いサービスプラットフォーム の実現に努めていく考えである。

執筆者紹介

久芳 靖

1988年日立製作所入社,情報・通信グループ ソフトウェア 事業部 企画本部 計画部 所属

現在,オープンミドルウェア製品の中期製品企画,アライ アンスに従事

E-mail: kubayasu@itg. hitachi. co. jp

鞍掛稔也

1989年日立製作所入社、情報・通信グループ ソフトウェア 事業部 企画本部 計画部 所属 現在, プラットフォーム関連のソフトウェア製品企画に従事 情報処理学会会員

E-mail: kurakake @ itg. hitachi. co. jp

尾山壯一

1983年日立製作所入社、情報・通信グループ ソフトウェア 事業部 企画本部 計画部 所属 現在, ソフトウェアの事業企画, 製品企画に従事 情報処理学会会員, 日本品質管理学会会員 E-mail: oyama_s @ itg. hitachi. co. jp