65 nm**プロセスノードに対応する**CD-SEM**技術**

CD-SEM Technologies for 65 nm Process Node

山口 敦子 Atsuko Yamaguchi 中垣 亮 Ryô Nakagaki 川田 洋揮 Hiroki Kawada

注:略語説明 CD-SEM(Critical-Dimension Scanning Electron Microscope), MAM(Move, Acquire, Measure), FOUP(Front Opening Unified Pod) 新形のCD-SEM^FS-9380形」の外観(左)と主な仕様

65 nmデザイン ルール プロセスの開発・量産に適合する装置として,300 mmウェーハ対応CD-SEMの最新機種「S-9380形 を開発した。

65 nmノード時代の半導体用測長装置であるCD-SEMには,測長再現性のいっそうの向上はもとより, 微細化に伴って顕在化してきたパターンラフネスなど 新しい課題への対応が求められている。

日立グループが新たに開発したCD-SEM「S-9380

形」は,65 nmノード時代を見越して製品化した装置で ある。この装置が持つ性能を十分に引き出して,いっ そうの微細化プロセスに対応するため,現在もさまざ まな要素技術を検討している。

1 はじめに

CD-SEM(Critical-Dimension Scanning Electron Microscope)は、半導体プロセスで形成される微細パターン の寸法を計測し、品質の高い半導体素子の製造を可能にし ている。日立グループは、これまで、プロセスの微細化に伴う さまざまな要素技術を開発し¹⁾、CD-SEM「S-9360形」に搭載 している。これらは、65 nmノードを見越して開発した「S-9380形」にも応用している。一方、微細化に伴って顕在化し てきたパターンエッジのラフネス(凹凸)の測長値への影響な ど、新たな課題に対応した測長技術を継続的に検討している。 ここでは,新しいCD-SEM「S-9380形」での主な新規開発 技術について述べる。

2 ^{ラフネス・CD}計測機能

2.1 ラフネスとトランジスタ性能

LSIの微細化に伴い,パターンエッジのラフネス計測が重要 になりつつある。特に,ライン(主としてゲート)パターン上の LER(Line Edge Roughness:ライン端の凹凸),あるいは LWR(Line Width Roughness:ライン幅の凹凸)の高精度 計測へのニーズが高まっている。これは、ゲートパターンの幅,

注:略語説明 W((トランジスタ幅), L((ゲート長), l(ドレーン電流) V((ゲート電圧)

図1 **ゲートパターンの**LWR(Line Width Roughness)がトラン ジスタ性能におよぼす影響

(a)のトランジスタ幅W。よりも周期の短いラフネスは,局所的な短チャネル効果を引き起こす。(b)のW。よりも周期の長いラフネスは,トランジスタ性能のばらつきを引き起こす。

すなわちゲート長がトランジスタ性能に大きく影響するためで ある(図1参照)。トランジスタ幅W。に比べて周期の短いLWR は,局所的にゲート長が短くなるショートチャネル効果を引き 起こすことによってリーク電流が増加し,しきい値電圧が下が る。一方,W。よりも周期の長いLWRは,複数のトランジスタに わたるゲート長の揺らぎを引き起こし,トランジスタ性能のばら つきの原因となる¹⁾。65 nmノード以降のLSIプロセスでは,従 来の寸法管理に加え,LERあるいはLWRの評価が重要課 題になる。

2.2 **ラフネス・**CD**の計測仕様**

LERあるいはLWRの指標としては,前者の場合はエッジ 点位置を,後者の場合にはライン幅分布の3(は標準偏差) を用いるのが一般的である。

例として,図2に示す計測条件でLWRを計測する場合を 考える。白線で示した枠が,LWRを計測する領域である。こ の領域内でパターンのエッジ点を抽出し,LWR値を求める。 白い点が抽出されたエッジ点である。枠(検査領域)の縦方 向長さが短い領域(a)内と,長い領域(b)内のLWR値を比 較すると,広い領域で計測すれば長い周期のラフネスが取り 込まれるので,後者のほうがLWR値は大きくなる。LWR値は

図2 LWR**計測値への検査領域長とエッジ点間隔の影響** (a)では領域が狭いため,長周期ラフネスが計測できない。(c)では短周期ラフネ スが計測できないため,正確な値が得られない。(b)がベストとなる。

検査領域の縦方向長さ、以下 ,検査領域長と言う。)に依存 するのである¹⁾²⁾。そのため ,どのくらいの長さが適当である かが第一の課題となる。

一方,エッジ点の抽出間隔も重要である。領域 b)に示す 測り方と,領域 c)に示す測り方を比べてみると,領域 c)の ように検出エッジ点の間隔が空くと,細かい周期のラフネスが 取り込めない。当然,(b)に示した計測方法よりも精度が悪く なる。そのため,どのくらい細かく測ればよいのかが第二の 課題となる。これら二つの課題について以下に述べる。

(1) 検査領域長

第一の課題に対応するため,平均的なLWR値の検査領 域長依存性を計測した。LWR値のばらつきの3 を縦軸に とっているグラフを図3に示す。3 値は検査領域長Lの増大 に伴って増大するが, $L>2\mu$ mでは飽和傾向になる。このこ とは各種レジストで確認されており³⁾,L=数+マイクロメートル での計測値に比べ, $L=2\mu$ mでの3 値は95%程度となるこ とがわかっている。なお,このグラフの値はLWR値の平均値 であり,実際にはこの平均値の周りにLWR値がばらつく。 3 はLが小さいときは大きいが,Lの増加に伴って減少する。 また,3 の値にも統計的な誤差によってばらつきが生じてい るが,これもL=2 μ mでは平均値の10%以下に抑えられるこ とが確認されている。すなわち,Lとしては2 μ mが必要かつ 十分な値であると考えられる。

(2) エッジ点間隔

第二の課題に対応するため,LWR値のエッジ点間隔(以下, yと言う。)依存性を計測した。L=2 µmの領域のエッジ 点をできるかぎり細かく分割して,LWR値を求める。これを

注1: ◆, (X 実験), — , ---(シミュレーション) 注2: 略語説明 CD(Critical Dimension)

図3 LWR 計測值(平均)の検査領域長依存性

LWRを計測するには,L=2 μmが必要かつ十分な検査領域長である。この領域 長であれば,LWRの平均値は95%まで飽和し,かつばらつきが10%以下になる。

真のLWRと仮定する。この値に対して,エッジ点間隔が y であるときに求められたLER値が,真のLER値からどのくら いずれているのかをプロットした(図4参照)。このずれは統 計的にばらついているが それを±5%程度に収めるためには,

y < 20 nm程度とすればよいことがわかる。また,種々のレジストパターンの解析によれば,観測されるラフネスの特徴的な周期のうち最も短いものは約20 nm程度である⁴⁾。このラフネス成分を計測値の中に取り込むためには,検出間隔としてその半分の10 nmが必要である。

これらのことから,エッジ点間隔 yとしては,10 nmが適切な値であると言える。上述した(1)および(2)をまとめると,

図4 2 µm**領域で計測した**LWR値の真値からのずれ エッジ点間隔 yが広がるにつれてずれも増加する。

LWR計測は2 いの検査領域を200点のエッジ点を用いて行 えばよいということになる。なお,LERの計測においても同様 の結果が得られた。

2µmという値は,CD(微小寸法)計測においても有効であ る³)。図3のグラフには,LWRとともに,検査領域長Lを用い て計測した場合のCDばらつきをプロットした。このCDばらつ きはラフネスによって生じていると考えられる。周期がL以下 のラフネスはLWRとして認識され,Lよりも大きい成分はCDが 変動しているものとして認識される。したがって,Lが小さくな るほど,CDの変動は大きくなる傾向にあり,これがCD計測 誤差となる。この影響を避けるためには,LWRが十分飽和 する条件(L 2µm)でCDを計測することが必要である。 チップ内やウェーハ内,あるいはウェーハ間のCD均一性を計 測する際や,装置の測長再現性評価の際には,これを考慮 しなければならない。

このため, CD均一性(CDばらつきの3)への影響をシ ミュレートした。パターンに生じるLWRを(L=2µmで計測し て)5 nmとしたときの,真のCD均一性と観測されるCD均一 性との関係を図5に示す。なお,ここで従来方式とした L=200 nmは,20万倍観察画像上で検査領域を150に設定 した場合に相当する。

いずれの方式でも、LWR起因誤差の影響はCD均一性が よい場合に大きくなる傾向を持っている。従来方式では、観 測値が6 nmのときに真の値(4.4 nm)との差は約40%にもな る。しかし、新方式を用いることにより、観測値は4.7 nmとな り、真の値に十分近い。いっそう高いCD均一性が要求され る今後のプロセスでは、新方式のラフネス計測方法の必要性 が高まってくるものと予側する。

以上を要約すれば、「長い(2µm)領域のエッジ情報を密 に(10 nm間隔)拾うことにより、LERもCDも正確に計測でき

図5 従来方式と新方式によるCD均一性の計測結果 CD均一性への影響をシミュレートした結果を示す。

る」ということなる。

新方式による計測を実現するには、1本のラインを高倍率 で観察し、視野を縦方向に移動して合計2 µm分のデータを 取得すればよい。しかし、実際の生産プロセスではスルー プットの制約がある。また、視野が重なったりすると、ArF (フッ化アルゴン)レジストパターンなどは電子線の照射によって 収縮が生じるなど、パターンへのダメージの影響が出てしまう。 これらの課題については、縦方向と横方向の倍率を個別に 設定した変倍観察を行うことにより、2 µm以上の縦方向の長 さを持つパターンを、1回の観察で測長することが可能である。

3 高精度測長技術

3.1 測長ツールに求められる再現性能

CD-SEMは,半導体ウェー八上に形成される微細な配線・穴などの回路パターンの寸法(CD値)を計測するための ツールである。露光技術の進歩に伴う回路パターンの微細化 により,寸法計測で許容される計測誤差はますます小さくな る傾向にあり,今後の65 nmプロセスノード時代においては, 測定ツールに求められる測定精度(測長再現性)がサプナノ メートルオーダーに達すると見られている。

ここでいう再現性とは、(1)同一パターンを複数回,連続 測定した場合のCD値のばらつきを意味する短期再現性 (3 short)、(2)同一個所を時間的な間隔(例えば1週間)を空 けて測定した場合のCD値のばらつきを意味する長期安定性 (3 long)、および(3)同一個所を複数台の装置で測定した場 合のCD値のばらつきを意味する機差(3 tool)の三つを考慮 したトータル再現性(3 total)であり、それらは、次の式(1)に よって関係づけられる。

3.2 短期再現性の低下要因

最も基本的な要素である短期再現性能に関する性能向上 への取り組みについて以下に述べる。

再現性向上の第一歩は、どのような原因で再現性が低下 するかを定量的に解析することである。

再現性の要因解析評価での短期再現性能とは,通常の 場合,ウェーハロード 画像撮像 測定 ウェーハアンロー ドから成るダイナミックシーケンスにより,同一配線パターンを 連続的に,複数回計測した場合のCD値のばらつき(3 short) を意味する。CD-SEMにおける測長処理に混入する主要な 再現性低下要因は以下のとおりである(図6参照)。

(1) ノイズは、電子ビームの照射によって発生する二次電子 が確率過程に従うという、SEMの撮像原理に起因して発生 するショットノイズを意味する。

図6 **短期再現性の低下要因**

各再現性低下要因が画像に与える影響を,同一個所を2回測定した場合につい て模式的に示す。説明のため,画像は誇張してある。

(2)視野ずれは、電子ビームの試料への入射位置が試料 表面の電位状態などの影響を受けて測定ごとに生じている。 視野ずれが起こると、微妙に異なる位置を計測してしまい、 CD値がばらつくことになる。

(3)オートフォーカスばらつきはピントの合った画像を得るための合焦点位置検出処理の精度に起因するもので,画像取得時の合焦点位置算出結果の微妙な違いによって発生する CD値のばらつきを意味する。

(4)明るさ補正ばらつきは,二次電子放出効率の異なる各 種材料にも一定の明るさレベルで画像撮像をするために,検 出信号の増幅率を内部で自動調整する精度に起因する。試 料表面の電位変化などにより,画像取得時に設定される信 号増幅率に微妙なばらつきが発生し,これが再現性を低下 させる可能性があると考えられる。

3.3 要因解析結果

前節で述べた各種の要因について定量解析を行った結 果を図7に示す。実験では、帯電の影響が少ない、エッチン

図7 S-9380形の再現性低下要因の解析結果

短期ダイナミック再現性と各再現性低下要因の定量解析結果を示す。図中の値 は3 値である。

グ後のポリシリコン配線パターンを評価サンプルとして用いた。

ポリシリコン配線に対する短期再現性能が約0.55 nmで あったときに、それを生じさせている要因はノイズが約0.3 nm, 視野ずれが約0.4 nm,オートフォーカスが0.25 nm,明るさ補 正がほぼ0 nmという結果が得られた。ここで,短期再現性能 0.55 nmと各要因の低下分は,式1)同様,2乗和によって関 連づけられる。

これら再現性低下要因のうち,明るさ補正に対する解析 結果を図8に示す。明るさ補正処理では,一定の明るさの画 像データを取得するために,検出した信号を増幅変換する 際の増幅率を装置内部で自動調整する。同図は,同一サン プルを複数の異なる増幅率で撮像した際のCD値をプロットし たものである。このグラフから,増幅率が変化しても有意な

図8 明るさ補正処理の影響評価結果

明るさ補正処理において自動設定される信号増幅率とCD値との関係を示す。グラフの横軸は増幅率を表す装置パラメータ値を,縦軸はCD値の相対変動量をそれ ぞれ示す。明るさ補正処理において想定される増幅率の変動範囲では,増幅率の 変化に比べてCD値がほとんど変化しないことがわかる。

CD変動が発生していないことがわかった。以上により,明る さ補正処理における信号増幅率のばらつきは,主要な再現 性低下要因でないことを確認することができた。

また,再現性低下要因のうち,視野ずれが与える影響は, 測定対象に依存するものである。つまり,エッジラフネスが小 さい測定対象に対しては,視野ずれによって発生するCD値 ばらつきは小さく,ラフネスが大きいパターンに対しては,発生 するCDばらつきは大きくなる。これは測定装置が原因となる 再現性低下要因であるため,装置における対策が必要であ る。その対策例を図9に示す。ダイナミックシーケンスで取得し た複数ごとの画像の一つを基準として,その他の画像との視 野ずれ量を算出し,その算出結果を基にデータ処理領域を 画像ごとに設定するので,厳密な意味で同一個所を複数回

図9 S-9380形の再現性評 価モードのシーケンス(a)と ラフネス情報を用いた視野 ずれ検出の概要(b)

ラフネス強調画像を用いて画像 間の微小な視野ずれ量を検出する。 検出結果を基にデータ処理領域の 設定を行うため,厳密な意味で同一 個所を複数回測定した場合の再現 性能を評価することが可能となる。 測定した場合の再現性能を評価することが可能である。

画像間の視野ずれ量の検出は,撮像された配線パターン に発生しているラフネスを用いて行う。具体的には,撮像画 像からラフネスパターンだけを顕在化した画像を作成し,その 画像を用いてパターンマッチングによるずれ量計算を行う。こ の機能により,発生しているラフネスが小さいパターンにも,精 度よく視野ずれ量の検出を行うことが可能であり,レジストパ ターンだけでなくエッチング後の配線パターンにも,再現性能 を精度よく評価することができる。また,再現性能の評価結 果が,サンプルに依存して変動してしまう問題も排除すること が可能となる。

これら各要因を解析して低減方法を検討した結果,検討 したサンプルに対する短期再現性が0.55 nmから0.39 nmま で向上した。また,長期安定性(3 long)や機差(3 lool)につ いても,特定したサンプルについてそれぞれ0.4 nm程度が実 現可能な見通しを得ていることから,装置のトータル再現性 (3 lotal)として0.8 nmが見込まれる。現在,65 nmノードのプ ロセスへの適用のために,さまざまなサンプルについて実証 試験を重ねている。

いて述べた。

日立グループは,65 nmノードおよびそれ以降の半導体製造プロセスのニーズにこたえることを目指し,CD-SEM「S-9380形」の装置性能を十分に発揮させるための各種要素技術の開発を継続している。現在行っているさまざまなサンプルへの実証試験に加え,今後の,さらなる微細プロセスへの対応として,(1)分解能,測長再現性の向上,(2)レジストシュリンクや帯電などサンプルダメージへの対応,(3)二次元,三次元計測のプラッシュアップなどに取り組み,測長技術のいっそうの向上を図っていく考えである。

参考文献

- 1)A.Yamaguchi, et al. : Characterization of Line-Edge Roughness in Resist Patterns and Estimation of its Effect on Device Performance, Proc. SPIE 5038, p. 689(2003)
- 2)V. Constantoudis, et al. : Photo-Resist Line-Edge Roughness Analysis Using Scaling Concepts, Proc. SPIE 5038, p. 90(2003)
- 3)A. Yamaguchi, et al. : To be published in Proc. SPIE 5375
- 4)A. Yamaguchi, et al. : Characterization of Line-Edge Roughness in Resist Patterns by Using Fourier Analysis and Auto-Correlation Function , Jpn. J. Appl. Phys. 42, p. 3763 (2003)

4 おわりに

ここでは、CD-SEM「S-9380形」の主な新規開発技術につ

山口 敦子

1992年日立製作所入社,中央研究所 ソリューションLSI研 究センタ ULSI研究部 所属 現在,先端リソグラフィープロセスの研究に従事 理学博士 日本物理学会会員,応用物理学会会員

E-mail : yamaguch @ crl. hitachi. co. jp

中垣 亮

1995年日立製作所入社,生産技術研究所 検査システム研究 部 所属 現在,半導体の検査・解析装置の研究開発に従事 電子情報通信学会会員,IEEE会員 E-mail:r-nakaga @ perl.hitachi.co.jp

執筆者紹介

川田 洋揮

1986年日立製作所入社,株式会社日立ハイテクノロジーズ 那珂事業所 エレクトロニクスシステム第一設計部 所属 現在,電子線装置の設計・開発に従事 日本真空協会会員,American Vacuum Society会員 E-mail: kawada-hiroki @ naka. hitachi-hitec. com