ナノメートル時代の 半導体デバイスと製造技術の展望

Prospect of Si Semiconductor Devices

and Manufacturing Technologies in Nanometer Era

土屋龍太 Ryúta Tsuchiya 伊澤 勝 Masaru Izawa 木村紳一郎 Shin'ichirô Kimura

注2:略語説明 MOSFET(Metal Oxide Semiconductor Field Effect Transistor), MPU(Micro Processing Unit)

LSIの基本デバイスであるMOSFETと,不揮発性メモリのデバイス構造変化の予測

MOSFETと、不揮発性メモリのデバイス構造の変化を、微細加工寸法の推移とともに示す。MOSFETでは、チャネル領域の三次元化が、不揮発性メモリでは電荷蓄積膜の利用がそれぞれ進むと予想される。

65 nm世代の微細加工技術を用いた製品が登場し, Si-LSIの微細化はナノメートルの領域に深く入り込むま でになった。従来のSiデバイスの限界を打破するための 提案が,数多く登場している。Si-LSIの基本デバイスで あるMOSFETでは,電流を流すチャネルを三次元基板 にしたデバイス構造が注目されており,日立製作所は新 しいSOI-MOSFETを開発した。三次元構造チャネル MOSFETと同じ効果を持ち,かつ,基板電位を有効に 活用できるのが特徴である。また,新しい製品への応用 が拡大した不揮発性メモリ,特に大容量メモリの中心で あるフラッシュメモリが注目されているが,従来の浮遊 ゲートに電荷を蓄えるメモリセルには限界がある。そのた め,新しい試みとして電荷蓄積膜を用いたメモリが開発 されている。日立グループは,このようなSiデバイスの変 化を踏まえながら,LSIの製造技術に関するベストソ リューションの提供に取り組んでいる。

はじめに

「日立評論」86巻7号(2004年7月号)で、「ナノメートル 世代のシリコン半導体デバイスの展望」をまとめた¹⁾。 Si-LSIの基本デバイスであるMOSFET(Metal Oxide Semiconductor Field Effect Transistor)に注目し、 今後の微細化の進む方向を展望した。それからわずか に1年半しか経過していないが,Si半導体デバイスとLSI を取り巻く環境には大きな変化があった。当時は,好調 なデジタル家電などを背景に,LSI産業が,わが国を含 めて再び成長軌道に乗ったと思われた時期だった。しか し,2004年の暮れごろから始まった,需要の後退と価格 低下の影響で,2005年度は,多くの日本のデバイスメー カーにとって,マイナス成長の年となってしまった。しかし, 一方で,携帯型デジタルオーディオプレーヤなどの新し い応用先が生まれた大容量のフラッシュメモリなどは活 況を呈しており,大きな飛躍を示した。また,パソコンや 携帯電話などに使われるLSIで大きな市場占有率を持っ ているメーカーも,順調に売り上げを伸ばした。

技術的な面では,65 nm世代の微細加工技術を使ったロジック製品が,一部のメーカーから出荷されている。 また,メモリの分野では,80 nm世代の技術で作られた フラッシュメモリが製品化されている。

こうした1年半の間の変化を踏まえながら,Si半導体 デバイスとLSIを再度展望してみたい。

ここでは,特に,注目度が高まってきた三次元構造の デバイスと,最も活況を呈しているフラッシュメモリに代表 される不揮発性メモリに焦点を当てながら,デバイスの 微細化を支える製造技術に関して,要求される性能や 機能について述べる。

三次元構造MOSFET

ITRS(International Technology Roadmap for Semiconductors)は、2010年にはハーフピッチが 45 nmになり、高性能マイクロプロセッサのMOSFETの ゲート長は18 nmになると予想している²⁾。しかし、現状 の平面的なMOSFET構造でこの寸法を実現するのは 容易ではない。

微細化限界を打破するデバイス構造として,二つ以上 のゲート電極を設けたマルチチャネルMOSFETが,近 年,大きな注目を集めている。マルチチャネルMOSFET は,二つ,もしくは,三つのゲート電極でMOSFETの チャネル領域を制御するため,一つのゲートだけでチャ ネル領域を制御する従来のMOSFETに比べ,短チャネ ル効果に強く,微細化に優れる。マルチチャネルMOS- FET構造は,従来と同じ構造を用いるプレーナ型(a)と, 縦型縦方向チャネル型(b),および縦型横方向チャネル 型(c)のようなノンプレーナ型(三次元構造)に大別される (図1参照)。

2.1 プレーナ型

プレーナ型マルチチャネルMOSFETは,基本的には 従来のMOSFETと同じ構造であり,従来のプレーナ加 工技術が,そのまま使えるという利点がある。一方,上 部および下部ゲート電極を自己整合させて形成すること が難しく,プロセスが複雑になる課題が存在する。

日立製作所と株式会社ルネサステクノロジは,近年, この課題を改善し,複雑な製造プロセスを用いることな く,簡易にプレーナ型マルチチャネルMOSFETを作製 する新技術を開発した[図2(a)参照]。SOI(Silicon on Insulator)基板の埋め込み酸化膜層を10 nmまで薄膜 化し(従来は100 nm程度),不純物導入技術を用いて 下部ゲート電極を作ることによって,自己整合的に上部, 下部ゲート電極を形成する点が大きな特徴である³⁾。従 来のマルチチャネルMOSFETでは,ゲート電極が一体 化されているため,3端子型でしかデバイスを動作させるこ とができなかった。

一方,新構造のデバイス(薄膜BOX(Buried Oxide) SOI)では,上部,下部ゲート電極を独立に制御できるた め,4端子でデバイスを動作させることができる。4端子型 とすることで獲得できる大きな利点は,一つのゲート電極 でデバイスのスイッチング動作を行いつつ,他方のゲート 電極を用いて,デバイスのしきい電圧を自在に制御でき ることである。実際に試作したプレーナ型マルチチャネル MOSFETのスイッチング特性を図2(b)に示す。下部電 極のバイアスを制御することで,デバイスの電流が大きく 変化していることがわかる。バイアス効果を利用すれば,

図1 マルチゲートMOSFETの種類

(a)プレーナ型MOSFET (b) 縦型縦方向チャネル型MOSFET (c) 縦型横方向チャネル型MOSFET(フィン型MOSFET)をそれぞれ示す。

注:略語説明 SOI(Silicon on Insulator), BOX(Buried Oxide)

- 図2 | 薄膜BOX-SOI**トランジスタの断面模式図(** a **)とスイッチング**特 | 性(b)
 - 従来のSOI-MOSFETと異なり,BOX層が10 nm程度にまで薄膜化されてい るのが特徴である。その結果,基板電位によってMOSFETの特性を変調することが可能となる。

デバイス動作時の出力電流を20%増大できる一方で, 待機時にはオフリーク電流を10に低減することができ, 高速性と低消費電力性を両立させることが可能となる。

2.2 三次元構造MOSFET

「日立評論」2004年7月号で紹介したフィン型MOS-FETは、図1(c)の縦型横方向チャネル型MOSFETに 相当する¹⁾。この構造は、日立製作所が、DELTA (Fully Depleted Lean-Channel Transistor)と名付け て提案したものが原型となっている⁴⁾。その後も、縦型 チャネルの2面をゲート電極に用いるダブルゲート型 MOSFETに加え、チャネル断面の3面をゲート電極で囲 んだトライゲート型MOSFET⁵⁾、また、その断面形状から 名付けられたパイゲート型MOSFET⁶⁾、(オメガ)ゲート 型¹⁾など、さまざまな構造を持つ三次元構造MOSFETが 登場するに至っている。いずれも、フィン型MOSFETの 範ちゅうに入れて考えることができるもので、ゲート電極 によるチャネル領域の制御性を高めることで、効果的に 短チャネル効果を抑制することを意図したデバイス構造 である。

また,近年の進展として,より集積化を意識した報告 が増加し始めていることがあげられる。具体的にはメタ ルゲート材料を採用して,しさい電圧を調整したフィン型 MOSFETや,複数のフィン(マルチフィン),もしくは背の 高いフィンを採用し,実効的なゲート幅面積を増やした

注:略語説明 Ps Tr(Pass Transistor), Ld Tr(Load Transistor) Pd Tr(Pull-Down Transistor)

図3 改良型フィン型MOSFET構造例(マルチフィン構造や背の高い フィンを採用したMOSFET(a),三次元構造SRAM(b)) チャネルを三次元構造にしたMOSFETの代表例を示す。電流を多く流すた めや、デバイスを積層するためのくふうが施されている。

> フイン型MOSFET[®]などがそれにあたる(図3(a)参照)。 数10 nm程度の幅の狭いフイン形状を用いるため,実効 的なゲート幅を確保しにくいといった,フイン型MOSFET 特有の課題の克服を試みたものである。また,フイン型 MOSFETで構成されたSRAM(Static Random Access Memory)が報告されるなど,回路動作の検討 が進んでいる[®]。さらに,フイン型MOSFETとは異なるが, プレーナ型MOSFETを三次元に集積する三次元構造 SRAM¹⁰(図3(b)参照)の登場なども,近年の三次元構 造MOSFETの進展と言える。

3.1 大容量不揮発性メモリ

携帯型デジタルオーディオプレーヤなどの進化に伴っ て、その記憶媒体としての大容量不揮発性メモリ、以下、 フラッシュメモリと言う。)の市場が拡大している。現在は 90 nmの微細加工技術を用いた2 Gb(ギガビット)が生産 の主流であるが、すでに、60 nm技術の8 Gbも登場して いる¹¹。

大容量フラッシュメモリのメモリセル(記憶の最小単位) 構造を模式的に示したのが図4(a)である。多結晶Siの 積層構造になっており,下部は,周辺を絶縁膜(SiO2膜) で覆った,独立した多結晶Siのプロッグ(浮遊ゲート)で

図4 | 浮遊ゲート型フラッシュメモリの断面模式図 (a)は制御ゲートに平行な断面(b)は制御ゲートに垂直な断面を示す。

図5 絶縁膜を用いたフラッシュメモリの断面模式図 (a)は制御ゲートに平行な断面(b)は制御ゲートに垂直な断面を示す。

ある。2 Gbのメモリでは,80 nm×100 nm×100 nm程度 の大きさしかない。その上に制御ゲートが電極として配 置されている(図4(b)参照)。この制御ゲートに高電圧 を印加し,Si基板から電子を浮遊ゲートに注入し,メモ リ動作を行っている。

フラッシュメモリの最大の課題は、浮遊ゲートの大きさ とその間隔が、数10 nmという寸法領域になっているこ とに起因する。図4(a)に示したように、制御ゲートは浮 遊ゲート間の隙(すき)間を埋めていなければならない (カップリング比を確保するため)。しかし、浮遊ゲート間 の隙間が50 nm程度しかなく、しかも、この間に、制御 ゲートと浮遊ゲート間を絶縁する膜であるONO膜(Si酸 化膜/Si窒化膜/Si酸化膜)を15 nm程度堆積しなけれ ばならないので、近い将来、浮遊ゲートの隙間に制御 ゲートを入れるのは不可能な状況になる。

このような状況を踏まえ、浮遊ゲートに代わる電荷保 持媒体として絶縁膜を利用することが注目されている¹²。 これを使ったメモリの断面模式図を図5に示す。Siの窒 化膜が、電子や正孔を十分長い時間保持できることを 利用している。具体的には,窒化膜を酸化膜でサンド イッチした積層膜(ONO膜)である。制御ゲートに電圧を 印加し,基板から電子を注入して窒化膜や,窒化膜と 酸化膜の界面に捕獲する。

3.2 混載用不揮発性メモリ

不揮発性メモリの適用先は大容量メモリだけではな い。フラッシュメモリを搭載したマイコン(以下,フラッシュ マイコンと言う。)がその代表である。フラッシュメモリの役 割は,マイコンを動作させるプログラムの格納である。か つては,このプログラムは読み出し専用メモリ(ROM)に 書かれていたが,電気的に書き換えが可能な不揮発性 メモリを使うようになって,最終製品に組み込んだあとで も,プログラムの書き換えが可能になり,開発の期間短 縮や柔軟性が向上した。フラッシュマイコンはわが国の LSIメーカーの強み分野の一つである¹³)。

フラッシュマイコンで使われている不揮発性メモリは, 基本的には浮遊ゲート型であるが、データの書き込み・ 消去や読み出しを高速に行うために,特徴のあるメモリ セル構造となっている。その代表例を模式的に示したの が図6である140。このセルは、浮遊ゲートのすぐ隣に制御 ゲートとなるMOSFETを配置した構造になっている。こ のように, MOSFETを二つ隣接させたものを, スプリット ゲート構造と呼んでいる。制御ゲートのMOSFETを導通 させ、チャネルに電子を流す。その際、浮遊ゲート側の 拡散層に高電圧を印加しておくと,チャネルを流れてきた 電子は制御ゲートと浮遊ゲートの境界付近に存在する高 電界領域で加速され,高エネルギー状態となって浮遊 ゲートに注入される。このように,高エネルギー状態の電 子を注入させることができるので,低電圧での書き込み が可能である。消去は、制御ゲートを正電圧にして、電 子を引き抜くことで行われる。このフラッシュマイコンの分 野にも,ONO膜を用いたものが登場している¹⁵⁾。

3.3 新しい動作方式を用いる不揮発性メモリ

新しい動作方式を用いた不揮発性メモリの例を,一

図6 スプリットゲート構造の混載用不揮発性メモリ 浮遊ゲートと制御ゲートが隣接しており、スプリットゲート構造の不揮発性メモ リと呼ばれる。制御ゲートのチャネルでホットキャリヤを発生させ、それを浮遊 ゲートに注入する。

メモリデバイス	MRAM	PCRAM	RRAM
デバイス構造			
記憶メカニズム	磁気抵抗変化	相変化	抵抗変化
材料	FeMn/Co	GeSbTe	Pr _{0.7} Ca _{0.3} MnO ₃ , NiO
セルサイズ	8~15 F²	8~15 F ²	4~6 F ²
CMOS との整合性	追加マスク2~3枚	追加マスク 2枚	追加マスク 2枚
電圧(電流)	3V (1 mA)	3V (0.5 ~ 1 mA)	3V (2 mA)
書き換えサイクル(回数)	10 ¹⁵	10 ¹²	10 ⁶

注略語説明 MRAM(Magnetic Random Access Memory), PCRAM(Phase Change Random Access Memory), RRAM(Resistive Random Access Memory), K Feature Size)

図7|新しい材料を用いた不揮発性メモリの比較

情報記憶部に新しい材料を用いる,新不揮発性メモリの代表例を示す。MRAMでは磁気抵抗変化を,PCRAMでは結晶と非晶質との抵抗変化を,そしてRRAMでは界面 に起因した抵抗変化をそれぞれ利用する。

覧表として示す(図7参照)。ここでは,MRAM (Magnetic Random Access Memory),PCRAM (Phase Change Random Access Memory),RRAM (Resistive Random Access Memory を代表として載 せている。MRAMは,磁気抵抗効果を応用し,トンネル 接合部を流れる電流が,それを挟む磁性体の磁気モー メントの向きによって異なることを利用している。磁性体 はFe,Mn,Coなどの材料から成り,トンネル接合は 1 nm程度という極薄膜のAl₂O₃膜である¹⁶⁾。PCRAMは, DVD(Digital Versatile Disk)で実用化されているカル コゲナイド(GeSbTe)膜の相の違い(結晶と非晶質)によ る抵抗の違いを利用する。PCRAMでは電気パルスの 制御で結晶と非晶質を作り分ける¹⁷⁾。RRAMも、シリコン と接触している金属に電流を流した時の抵抗の変化を 利用している¹⁸⁾。

これらの新しいメモリは,すべて抵抗変化を利用して いる。記憶媒体に抵抗の変化をもたらすためには,現状 では1セル当たり1mA程度の電流を必要としている。さ まざまなくふうで電流の低減が図られているが¹⁹⁾,従来の メモリに比べて必要とされる電流は大きい。

課題が多い一方で、これらのメモリには、従来のメモ リでは実現できない大きな特徴がある。それが書き換え 回数であり、10¹⁰回以上の書き換え回数が報告されて いる。

将来のデバイス製造における 技術課題と展望

4.1 デバイスの微細化に伴う製造の課題

前述のように,LSIでは微細化だけでなく,新材料,新 構造が検討されている。はじめに,トランジスタの微細化 に伴う製造技術の課題を述べる。ITRS²⁾に従い,極薄 SOIのMOS(Metal Oxide Semiconductor)ロジックは 図8に示す構造になると想定した。ゲート長(Lg),SOI 層ともに20 nm程度である。加工寸法で許容されるばら つきは,3 で2 nmになる。これは,原子層にして10層程 度であり,製造プロセスに原子レベルの制御技術が要求 されることを意味する。さらに,新たな課題として,LER (Line Edge Roughness),リセス,ダメージなどを図8 に示す。

LERは,3 で5 nm程度あり,特に,周期100 nm以上の成分が大きい²⁰。 微細化に伴い,ゲート幅(Lw 光短くなっており,LERによる寸法変動がLgの主要なばらつき

注:略語説明 ST(Shallow Trench Isolation), LER(Line Edge Roughness) 図8 2010年ごろの極薄SOIデバイスの構造とプロセス課題 想定できる現象に基づき将来の課題を示す。デバイスの微細化、薄膜化に

伴い、ラフネス、基板のリセスおよびイオンダメージが顕在化すると予想される。

要因となってきた。特に,65 nm ノード以降の低消費電 カデバイスで顕在化すると言われている。このLERは, レジスト材料やレイアウトなどに起因しており,それを抑制 する技術開発が進められている²¹⁾。一方,短周期の LERは,その成分は小さいが,エッチングで改善するこ とも検討されている²²⁾。

ゲート絶縁膜にはHigh-kが用いられ,ゲート電極はメ タルになる。メタルゲート電極と多結晶Siとの界面に酸素 などが入り込み,加工不良の原因となる危険性が増す。 また,加工時には,「ノッチ」と呼ばれるアンダーカットの制 御が重要になる²³)。極薄SOIでは,しきい電圧を制御す るために,ミッドギャップのメタルが用いられる可能性が高 いが,p型とn型で異なる材料を用いる場合,メタル材の 差や膜厚差に起因して,Si基板へのダメージが入る可 能性が高い。

Si基板へのダメージは、ゲート電極加工時だけでなく、 オフセットスペーサ加工時やレジストはく離などでも問題と なる²⁴)。これまでは、数nmのダメージ層は、犠牲酸化や その除去で回避してきたが、これからは、チャネル形成 に数nmのリセスさえも許容できなくなる。特に、スペーサ の酸化膜エッチングの深さと、ボロンイオンの注入位置と が近くなり、エッチング時のダメージが接合を阻害するこ とも報告されている²⁵)。また、イオン注入やエッチング後の レジストはく離では、不揮発性の材料がレジスト材に打ち 込まれるため、パワーの大きなプラズマ処理が必要にな り、結果として、リセス量を大きくしている。

不純物の分布はトランジスタ特性を決める上で重要で あるが、ここでも微細化に伴う課題が顕在化してきた。 特に、急峻しゅんか分布形成が必要となるが、多結晶 Si粒の方位による深さのばらつきや、メタルゲート電極越 しの打ち込みなどが課題となる。また、微細化に伴い、 不純物打ち込み量の揺らぎ抑制やSTI(Shallow Trench Isolation 近傍の分布制御の重要性が増して いる²⁰。

トランジスタの特性に対し,形状,不純物分布以外に, 最近,応力の影響が大きくなっている。ゆがみを持つ チャネルは高速化に有効であるが,別の観点で見れば, 応力によりしきい電圧などが変動することを意味してい る。そのため,STI起因の応力,パッシベーション膜形成 などの応力制御によるデバイスの安定動作や高速化が 検討されている²⁷)。今後は,量産での応力制御の安定 性評価や,そのQQ Quality Control 技術が必要になる。

微細化に伴う課題を列挙してきたが,今後は,寸法 精度の向上だけでなく,LER低減,リセス抑制,応力制 御といった技術課題を解決する必要がある。いずれも, 計測手段 QC手法を含めた開発の推進が不可欠である。

図9 フィン型FET構造における加工の課題 既存のプロセス技術を基にフィン型FETでの課題を想定した。段差のある構 造での加工形状制御が重要になると考える。

4.2 デバイスの三次元化に伴う製造の課題

今後のトランジスタ構造として、ロジックではマルチゲート、メモリではRCAT(Recess-Channel-Array Transistor)[®]などのチャネル三次元構造が検討されている。 ここでは、図9に示すFET構造をあげ、製造上の課題について述べる。

図8のプレーナ型に比べて,フイン型は製造の難易度 が高くなる。フィン型FETでは,加工面にゲート絶縁膜を 形成するため,加工時の面荒れの抑制が重要となる。 さらに,ゲート電極形成では,プレーナ型と同様に,寸法 精度や,LER抑制は重要であるが,フインの高さに起因 する段差が,加工負荷を大きくする。具体的には,エッ チング時にフィンの上部が露出してから下地に到達する まで,長時間のオーバーエッチングが必要である。これ は,フィン側壁のゲート材料を除去しなければならないか らである。この段差起因の課題として,オーバーエッチン グ時のノッチや残渣(さ)の発生が報告されている^{23),29})。 さらに,プレーナ型より加工が過酷なことから,フィンの上 部へのダメージやリセスが大きな課題になると考える。

4.3 量産技術の課題と展望

ここまでは,単体のデバイス製造について述べてきた。 ここでは,量産展開をするために必要となる技術につい て述べる。

量産では,ニーズの高い時期に,市場価格に見合っ たコストで,必要な量を供給する必要がある。このため, コスト,歩留り,出荷までの期間が重要となる。微細化 が進むと,マスキング,リソグラフィーのコストが世代ごと に2倍程度に増加すると言われ³⁰⁾,コスト低減の重要性 が増している。

微細化に対応する製造プロセスでは,装置単体での 均一化改善や再現性向上に注力してきた。プロセスの

注:略語説明 FB(Feedback), FF(Feedforward), IM(Integrated Metrology), MVA(Multi-Variate Analysis) 図10 | APC**制御技術の概要**

ウェーハ検査のデータ、装置状態のモニタデータを用いたプロセス制御により、加工形状などのばらつきを低減するくふうが必要になる。

再現性を向上させるため、エッチングやCMP(Chemical Mechanical Polishing)で、自動終点判定に見られるモ ニタフィードバック型のプロセス制御が用いられてきた。し かしながら、微細化が進むにつれ、装置の機差や経時 変化により、使用する装置が限定される、メンテナンス頻 度が多くなるなどの課題が出てきた。これに対応するた めには、装置の完成度を高めるための期間もかかり、コ ストも高くなってしまう。

そこで,近年,APQ Advanced Process Control) と呼ばれるフィードバッ欠 FB),フィードフォワード FF 型 のプロセス制御による,装置ばらつき低減技術の開発が 活発になってきた(図10参照)。ウェーハ検査データを 用いたFF,FB型の制御が主流であり,ロット間での変 動を安定化するために活用されている。

検査データを用いる場合、その時間応答性から、ロッ ト単位での制御に限定されてしまう。このため、大きな変 化は修正できるが、微細化に伴う、より高い精度でのプ ロセス制御には十分ではない。そこで、ロット単位の制御 (lot to lot control)から、ウェーハごとの制御(wafer to wafer control)技術の開発に進んでいる³¹)。

しかし、ウェーハごとの制御には、膨大な検査工数が 必要であり、コストやスループットが犠牲になるという問題 がある。このため、高速な検査装置が必要になっている。 OCD(Optical Critical Dimension 計測は、専用の検 査パターンが必要であるが、スループットが高く、寸法計 測への活用が検討されている。最近では、IM(Integrated Metrology と呼ばれ、製造装置の搬送部に組 み込み、検査効率を高めたシステムも製品化されている。

一方で,すべての検査,計測が装置に組み込める状

況にはなく,装置モニタを用いたリアルタイム制御も提案 されている³²)。装置状態を逐次センシングし,検査データ との多変量解析により,制御モデルを構築する。このモ デルをベースに,センシングデータからプロセスを予測し, 装置を制御する手法である。例えば,エッチング工程中 の発光スペクトルからゲートの寸法を直接に予測できるこ となどが確認されている³³)。

このようなセンシング技術は、製造上の別の利点として も活用できる。量産では、品質管理のため、定期的な装 置QCや、プロセスQCを実施している。しかし、各QCで 許容される範囲も厳しくなり、QC間で発生したわずかな 装置変動も見逃せなくなっている。効率を考えると、QC 頻度を、増やすことは望ましくない。そこで、FDQ Fault Detection and Classification)の一手法として、全数 検査を実施せずに、装置のセンシングデータを基に、前 述の制御モデルを用いたQC手法が提案されている³⁴)。

さらに、一般にDFM(Design for Manufacturability)と言われ、製造ラインの歩留りを考慮した設計 ルール作成方法や、マスクパターンを最適化する技術が 重要となる。露光およびエッチング工程も含め、マスクへ フィードバックする技術としてPPQ(Process Proximity Correction)が提案されている³⁵。また、ラインの歩留 り実力に合わせ、設計ルールを最適化する手法とし て、CAA(Critical Area Analysis)などが実施されて いる³⁵。

DFMも重要であるが、今後は、装置間の変動差を低減することも限界に近くなることを考えると、リアルタイムな装置キャリブレーション(校正)によるプロセスの安定化が重要になると考える。

おわりに

ここでは、65 nm世代に入ったSiデバイスの現状と展 望、さらに、それを作るための製造技術について述べた。 微細化に伴う課題に対処するため、デバイス技術と製 造技術は新しい展開を見せている。デバイスの微細化だ けに頼った高集積化や高性能化にはかげりが見え始め ており、デバイスではプロセスひずみや三次元化を使った 性能向上や、新しい材料を使った不揮発性メモリへの 展開などに、その兆候を見ることができる。製造技術に はデバイスのばらつき抑制への重要な役割が課せられ、 数nmでの制御が要求されている。今後はますます、プ ロセス、デバイス、回路設計、製造が一体となった取り組 みが重要となる。

日立グループは、こうした変化に対応しながら、最先 端半導体デバイスの高品質・高効率な生産を実現するベ ストソリューションを提供していく考えである。

参考文献など

- 1) 木村,外:ナノメートル世代のシリコン半導体デバイスの展望,日立評論, 86,7,459~464(2004.7)
- 2) " ITRS "ホームペ ジ, http://public.itrs.net/
- 3) R. Tsuchiya, et al.:Technical Digest, Int. Electron Device Meeting, p.631(2004)
- 4) D. Hisamoto, et al.:Technical Digest, Int. Electron Device Meeting, p.1032(1989)
- 5) R. Chau, et al.:Ext. Abstract, Int. Conf. Solid State Devices and Materials, p.68(2002)
- 6) J. T. Park, et al.: IEEE Electron Device Letter, 22, p.405(2001)
- 7) C. Jahan, et al.: Symposium on VLSI Technology, p.112(2005)
- 8) N. Collaer, et al.: Symposium on VLSI Technology, p.108(2005)
- 9) J. A. Choi, et al.: Technical Digest, Int. Electron Device Meeting, p.647(2004)
- 10)S. M. Jung, et al.: Technical Digest, Int. Electron Device Meeting, p.265(2004)
- 11)J-H Park, et al.:Technical Digest, Int. Electron Device Meeting, p.873(2004)
- 12)Y. Shin, et al.: Technical Digest, Int. Electron Device Meeting, p.337 (2005)
- 13)http://resource.renesas.com/lib/jpn/flash_mcu/strategy/index.html
- 14)http://www.sst.com/technology/
- 15)N. Matsuzaki, et al.: Ext. Abstracts, Int. Conf. Solid State Devices and Materials, p.204(2003)
- 16)S. Tehrani, et al.: Proc. IEEE, Vol. 91, No. 5, p.703(2003)
- 17)S. Lai, et al:Technical Digest, Int. Electron Device Meeting, p.255 (2003)

- 18)I. G. Baek, et al.: Technical Digest, Int. Electron Device Meeting, p.587(2004)
- 19)N. Matsuzaki, et al.:Technical Digest, Int. Electron Device Meeting, $p.757(\ 2005\)$
- 20)A. Yamaguchi, et al.: Jpn. J. Appl. Phys., 42, p.3763(2003)
- 21)S. W. Chang, et al.: Proc of SPIE, 5753, p.1(2005)
- 22)M. Kurihara, et al.: Proc. of Dry Process Symp., p.7(2004)
- 23)M. Demand, et al.: Proc. of Dry Process Symp., p.401(2005)
- 24)S. Banerjee, et al.: Proc. of Technology Symposium Japan, p.1-26 (2005)
- 25)H. Kokura, et al.: Proc. of Dry Process Symp., p.27(2005)
- 26)H. Fukutome, et al.:Symposium on VLSI Technology, p.140(2005)
- 27)K. Ota, et al.:Symposium on VLSI Technology, p.138 (2005)
- 28)J. Y. Kim, et al.:Symposium on VLSI Technology, p.34 (2005)
- 29)B. Degroote, et al.: Proc. of Int. Symp. Microelectronics and Interface, p.52 (2005)
- 30)M. Kimura, et al.: NIKKEI MICRODEVICES, 246, p.111(2005)
- 31)Proc.of SEMI Technology Symposium Japan, Manufacturing Science(2005)
- 32)P. Chen, et al.:Proc. of Int. Symp. Semiconductor Manufacturing, p.155(2005)
- 33)J. Tanaka, et al.: Abstracts of APC Symp., Session 7-5(2003)
- 34) 池永, 外: 第66回応用物理学会学術講演会(秋季) 予稿集, p.111 (2005)
- 35)K. Hashimoto, et al.:Symposium on VLSI Technology, p.39 (2003)
 36)Y. Tsumoda:Proc. of Int. Symp. Semiconductor Manufacturing, p.233 (2005)

執筆者紹介

土屋龍太

1998年日立製作所入社,中央研究所 ULSI研究部 所属 現在,低電力CMOSデバイスの開発に従事 工学博士 応用物理学会会員 E-mail:r-tsuchi@crl.hitachi.co.jp

伊澤 勝

1989年日立製作所入社,中央研究所先端技術研究部 所属 現在,半導体加工プロセス装置およびプロセス制御技術 の開発に従事 応用物理学会会員,日本化学会会員 E-mail:m-izawa@crl.hitachi.co.jp

木村紳一郎

1980年日立製作所入社,中央研究所 ULSI研究部 所属 現在,マイコン混載用不揮発性メモリの開発に従事 工学博士 応用物理学会会員,IEEE会員 E-mail:sayo@crl.hitachi.co.jp