ウェーハ表面検査・解析システムソリューション Scanning Surface Inspection System with Defect Review SEM and Analysis System Solution 一安洋二 Yôji Ichiyasu 太田 英夫 Hideo Ôta 蜂谷 正幸 Masayuki Hachiya 榑沼 透 Tôru Kurenuma Smart Root Cause Analysis 欠陥検出から原因特定まで 欠陥発生 検査 欠陥レビュ 対策 原因特定 SEM像(二次元) EDS分析 対策に直結した 情報を提供する。 **欠陥レビュー**SEM 原因プロヤス 「RSシリーズ」 原因装置 欠陥マップ 欠陥のメカニズム の早期解析 AFM像(三次元) ウェーハ表面欠陥検査装置 「LSシリーズ」 「WAシリーズ」

注:略語説明 SEM(Scanning Electron Microscope:走査型電子顕微鏡), EDS(Energy Dispersive X-ray Spectrometer:エネルギー分散型X線分析装置) AFM(Atomic Force Microscope:原子間力顕微鏡)

表面検査装置と欠陥レビューSEMのリンケージ

ウェーハ表面欠陥検査装置から得られた欠陥位置座標を元に、欠陥SEMレビューにより、観察・分類、およびEDS元素分析すること、またはAFMを用いて三次元観察することにより、 顧客生産システムの歩留り向上に貢献する情報を提供する。

ウェーハ表面検査装置で得られる情報は、欠陥マップ や欠陥個数などに限られているが、欠陥を低減するため の対策を迅速に行うためには、欠陥がどこから発生して いるかを知ることが重要である。そのためには、欠陥の形 状や成分など、より具体的な情報が必要となってくる。

株式会社日立ハイテクノロジーズは,ウェーハの表面 欠陥検査装置と欠陥レビューSEMおよび日立建機ファ インテック株式会社のワイドエリア原子間力顕微鏡 (AFM などをラインアップしている。今回,パターン無し シリコンウェーハの表面解析についての情報を提供する 歩留り向上技術'Smart Root Cause Analysis 'を開 発した。従来,パターン無しシリコンウェーハの表面検査 結果の座標出力に基づく欠陥観察は,アライメント基準 が無いため困難を極めていたが,このシステムは,そうし た課題を解決し,効率のよい致命的欠陥対策に大きく 貢献するものである。

はじめに

パターン無しシリコンウェーハ基板には,大別すると二 つの用途がある。一つは,基板上に回路パターンを形成 し,デバイスを製造する本来の用途である。もう一つは, デバイス製造装置,すなわち成膜装置や,露光装置, エッチング装置, CMP(Chemical Mechanical Polishing)装置,洗浄装置などから発生する欠陥を調べるた めの用途である。前者のウェーハをプライムウェーハ,後 者のウェーハをテストウェーハ,もしくはモニタウェーハ, ダミーウェーハなどと呼んで区別している。

テストウェーハの消費量は,デバイスを製造するため

目的	対象ウェーハ	ユーザー
PWP 測定	鏡面ウェーハ	デバイスメーカー 装置・材料メーカー
(ウェーハ搬送発塵)		
PID 測定	膜付きウェーハ	
(プロセス起因発塵)		
シリコンウェーハの	鏡面ウェーハ	ウェーハメーカー
表面欠陥測定		

表1	表面欠陥解析の目的と対象ウェーハおよびユーザー	
	表面欠陥解析は,半導体産業にかかわる多くのユーザーが必要としている	

注:略語説明 PWP(Particle per Wafer Pass), PID(Process Induced Defect)

のプライムウェーハとほぼ同数で、テストウェーハを用いた 欠陥測定が広く行われている。デバイスの微細化に伴っ て、要求される欠陥計測の対象サイズは、年々小さく なってきており欠陥の検出や解析が難しくなってきている。 テストウェーハを用いた製造装置の欠陥解析方法に は、ウェーハ搬送発塵(じん)解析とプロセス起因発塵解 析がある。ウェーハ搬送発塵(以下、PWP:Particle per Wafer Passと言う。)解析とは、実際にテストウェーハを 製造装置の中で搬送し、搬送途中で発生してウェーハ に付着する発塵を調べる作業である。プロセス起因発 塵(以下、PID:Process Induced Defectと言う。)解析 は、実際のプロセス条件で動作させ、成膜(ダミーデポ) などの処理がなされたあと、ウェーハのプロセス起因に よって発生する欠陥を調べる作業である(表1参照)。

ここでは ,ウェーハの欠陥検査装置と ,上記の解析手 法について述べる。

ウェーハ表面欠陥検査装置

パターン無しシリコンウェーハ基板の欠陥については, レーザ散乱原理を応用し,検出する。株式会社日立ハ イテクノロジーズが提供するウェーハ表面検査装置LSシ リーズの検出原理を示す(図1参照)。これは,レーザを ウェーハ上方より照射し,欠陥からの散乱光を受光レン ズで集光し,光電変換素子で電気信号に変換して欠陥 を検出するものである。ウェーハは,回転ステージに載 せて回転しながら半径方向に移動することにより,ウェー ハ全面を高速で検査する。ステージに取り付けたエン コーダにより,ウェーハの欠陥位置情報を得る。

ウェーハ表面検査装置の最新モデル"LS6800"の最 高到達感度は 鏡面ウェーハ上で36 nmを達成している。

3.1 欠陥レビューSEM

ウェーハ表面検査装置で得られる情報は、欠陥マップや、欠陥個数などに限られているが、欠陥を低減するた

図1 ウェーハ表面検査装置の検出概要 ペアウェーハ上にレーザを照射して,高速に欠陥を検出する。

めの対策を迅速に行うためには、欠陥がどこから発生し ているかを知ることが重要であり、欠陥検査で欠陥を検 出し、そこで得られた欠陥の位置座標出力に基づいて SEM(Scanning Electron Microscope:走査型電子顕 微鏡 などの高倍の観察装置で欠陥観察することは極 めて有効な手段である。

欠陥レビューSEM「RSシリーズ」は、このような背景の 下で、近年の高感度化した欠陥検査装置で得られる膨 大な検査結果を、効率よく、短時間でレビューするため に開発された。

3.2 パターン無しウェーハの欠陥レビューの課題

ウェーハ表面検査・欠陥解析の手順を以下に示す。

(1) 表面欠陥検査による欠陥検出,および欠陥位置座 標の出力

(2)表面欠陥検査装置とレビューSEM装置の座標マッチングアライメント(図2参照)

(3) レビューSEMによる欠陥探索および観察

(4) EDS(Energy Dispersive X-ray Spectrometer: エネルギー分散型X線分析装置)による欠陥解析(元素 分析)

しかし,この手法は欠陥解析に有効と認識されなが ら,欠陥観察の実行は上記2~3項のSEM側で欠陥を 再捕捉するところに障壁があり,困難を極めていた。パ ターン付きウェーハの場合は,ウェーハ内に形成されて

図2 | 鏡面ウェーハの アライメント例 外周3か所, ∨ ノッチ先端 2か所の計5か所でアライメ ントを行う。

図3 広視野顕微鏡による鏡面ウェーハ観察の効率化 観察効率が飛躍的に向上する(~100倍)。

いるデバイスチップダイの原点を利用し、アライメントが比 較的容易に取れるため、欠陥を見つけやすい。しかし、 一方のパターン無しシリコンウェーハは、ウェーハの外形 を基準とすることが唯一のアライメント手段であり、検査 機側の座標系とレビュー側の座標系のマッチングを精度 よく取ることが難しいためである。

3.3 広視野光学顕微鏡機能

そこで日立ハイテクノロジーズでは、この課題を解決す るために、欠陥レビューSEM「RSシリーズ」に広視野光 学顕微鏡機能を搭載し、アライメント誤差の大きい鏡面 ウェーハ欠陥観察時の効率を大幅に向上させた(図3、 4参照)。

現在,ウェーハ上の600 μm角の視野にある70 nmサ イズの欠陥を自動捕捉することが可能であるが,これは 一般的な欠陥検査装置との総合アライメント誤差量が 200 μm以下という条件に対し十分な余裕を持っており, 各検査装置とのマッチングが可能である(図5参照)。

3.4 EDSによる欠陥元素分析

RSシリーズでは,解析機能として欠陥に含まれる元素 を同定する,EDS機能をオプションとして搭載することが 可能である。対象欠陥に電子線を照射して発生したX 線エネルギーを検出して元素同定を実現する外,その 検出した元素構成と登録された物質のライブラリとの比 較により欠陥物質の同定が実現可能となる。

この機能は欠陥レビュー,分類機能と併せて欠陥の 発生を究明する強力な機能であり,効率の良い致命的 欠陥対策に大いに貢献している(図6参照)。

4.1 AFMによる三次元表面形状解析

欠陥レビューSEMにより,簡便に表面欠陥のレビュー を行うことが可能となったが,さらに,表面の三次元形 状を観察する場合は,AFM(Atomic Force Micro-

図4 広視野光学顕微鏡の視野

広い視野で欠陥の探索が可能である。

注:略語説明 FOV(Field of View)

図5 広視野光学顕微鏡機能を用いて観察した欠陥の例

最初に光学顕微鏡で欠陥をマクロに見つけ、その後、SEMでミクロ観察する。

scope:原子間力顕微鏡 を用いると高さ方向を0.1 nm オーダーの高分解能で観察可能である(図7参照)。 AFMによる表面欠陥解析の対象としては,CMP工 程で形成されるマイクロスクラッチの観察や,シリコン ウェーハを製造する際に形成される結晶起因欠陥COP (Crystal Originated Pit),開口部分が100 nm以下の 典型的なくぼみ状欠陥などがあげられる。

図6 EDS**による欠陥物質の同定**

取得したスペクトルパターンを,登録したライブラリと比較して,一致率の高い順に物質名を表示する。

注:略語説明 AFM(Atomic Force Microscope)

日立WA型AFMのブロック図 叉7

カンチレバのばね定数に相当する原子間力を検出しながら,試料表面を走査 する。

4.2 表面検査装置とAFMの座標リンク

AMFに座標リンク機能を搭載することにより,表面検 査装置で得られた欠陥をAFMで観察することが可能と なった。解析手順を図8(a)に示す。また,その時のオ ペレーション画面とAFM出力例を図8(b)に示す。

4.3 ヘイズ(Haze)情報とAFM

表面欠陥検査装置では,表面の点欠陥の検出のほ かに、欠陥がなかった部分の表面散乱情報をマッピング する機能がある。ヘイズ情報は,最小検出感度以下の 散乱信号を処理したものであり,AFMの高分解能を生 かしてリンケージを行うことにより、さらに詳しい表面解析 の可能性があり、今後の課題としたい。

日立WA型AFMによる表面欠陥解析(a)と表面三次元観察例(b) 28 ペアウェーハの表面解析の手順、およびオペレーション画面、くぼみ状欠陥 出力例を示す。

おわりに

ここでは、検査解析ツールのインテグレーションによる 鏡面ウェーハの欠陥検出と,解析手法について述べた。

今後、デバイスの歩留りにインパクトを与える欠陥の発 生原因追究は,微細化の進展に伴い,さらに難しくなっ ていく状況にある。

日立グループは、検査・解析ツールのラインアップの 個々の装置の性能をさらに向上させるとともに、それらを 組み合わせたアプリケーションの開発を充実させ,将来 のニーズに応えていく考えである。

参考文献

1) 小藪,外;半導体プロセス評価用インラインAFM(原子間力顕微鏡),日 立評論,84,3,271~274(2002.3)

2) 野副,外;半導体デバイスの高品質・高効率生産を実現する検査・解析ソ リューション,日立評論,86,7,465~470(2004.7)

執筆者紹介

太田 英夫

1979年日立雷子エンジニアリング株式会社入社、株式会 社日立ハイテクノロジーズ 半導体製造装置営業統括本部 評価装置営業本部 アプリケーション技術部 所属 現在,半導体検査装置のマーケティングに従事 応用物理学会会員 E-mail:ohta-hideo@nst.hitachi-hitec.com

蜂谷 正幸

1980年日立電子エンジニアリング株式会社入社,株式会 社日立ハイテクノロジーズ ナノテクノロジー製品事業本部 半導体検査システム第二設計部 所属 現在,ウェーハ表面検査装置の設計に従事 E-mail:hachiya-masayuki@naka.hitachi-hitec.com

一安 洋二

1984年日立製作所入社,株式会社日立ハイテクノロジー ズ 半導体製造装置営業統括本部 評価装置営業本部 ア プリケーション技術部 所属 現在,半導体検査・レビュー装置のマーケティングに従事 応用物理学会会員

E-mail:ichiyasu-yoji@nst.hitachi-hitec.com

榑沼 透

1982年日立建機株式会社入社,日立建機ファインテック株 式会社,開発製造本部 第二設計部 所属 現在,AFMの開発設計に従事 日本機械学会会員,口ボット学会会員 E-mail:kurenuma82@hitachi-kenki.co.jp