

Completion of a 1,120-MVA Turbine Generator for Huadian International Zouxian Power Plant in China

村松誠二郎 Seijiro Muramatsu 宮川家導 Kado Miyakawa 小野田 満 Mitsuru Onoda 高橋 和彦 Kazuhiko Takahashi

岩重健五 Kengo Iwashige

図1 工場完成時の1,120 MVA 50 Hz発電機(左)と,発送に向けて場内クレーンで移動中のステータフレーム(右) 1,120 MVA 50 Hz発電機は,工場で回転試験をはじめ,さまざまな試験を行い,信頼性,設計の妥当性を検証した。

1.はじめに

近年,発電機は大容量化の傾向があり,大容量発電機が, 世界中で注目を集めている。中でも,資源の有効利用の観 点から,石炭火力発電所用の大容量2極発電機への期待が 高まっている。

日立製作所は,こうしたニーズに応えるため,大容量2極発 電機の開発に注力してきた。2005年には米国向け1,025 MVA 60 Hz発電機¹⁾²⁾を完成させた。この発電機は,2極発電機と しては当社初の1,000 MVAクラスの発電機であり,工場での 性能評価試験で各部性能を評価し,その信頼性を確認した。 50 Hz発電機では,2000年に完成した北海道電力株式会社 苫東厚真発電所向けの778 MVA発電機(以下,先行機と言 う。)がこれまでの当社最大容量機であるため,近年1,000 MVA を超える大容量機の開発に注力してきた。

今回は 中国華電集団公司・華電国際鄒県発電所向けに, 50 Hzで最大容量1,230 MVAの発電機を開発した(図1参 照)。発電機仕様を表1に示す。この発電機は,火力発電用 の単機では世界最大級であり,先行機778 MVAに対して約 1.6倍の容量増加となる(図2参照)。

ここでは、大容量発電機に適用した技術について述べる。

- 日立製作所は,中国華電集団公司・華電国際鄒県発電所向け1,120 MVAタービン発電機(2極,50 Hz を完成し)
 - 工場回転試験で性能を確認した。この発電機は,最大容量1,230 MVAと,
 - 火力発電用の単機では世界最大級であり,日立実績778 MVAに比べて約1.6倍の容量増加となる。そのため,
- 水素ガスと純水を冷媒とした高冷却構造を採用し,27 kV級高電圧絶縁などの技術を組み合わせることで,大容量化に対応した。
 - さらに、ロータ振動解析、ステータコア端部電磁界解析、ネットワーク通風解析、
 - 各部応力解析などの解析技術を駆使し,性能や信頼性の向上に努めた。
 - 工場回転試験では,効率,温度上昇,軸振動などの各試験において,設計仕様を満たすことを確認した。

1,120 MVA 50 Hz発電機の仕様を示す。				1,400	
定格容量	MVA	1,120			注
最大容量	MVA	1,230		1,200	
定格回転数	min ⁻¹	3,000		1.000	
力 率		0.90		^	
極数		2		¥ 800	
端子電圧	kV	27		≥	
電機子電流(定格)	A	23,949		数 600	
電機子電流(最大)	A	26,302		400	
短絡比		0.50			
水素ガス圧力	MPa•g	0.52		200	
絶縁種別		F			[
温度上昇クラス		В		0 196	50年
冷却方式		ステータ:水直接 ロータ:水素直接			
軸振動	μm _{P-P}	60	R	図っ <u></u> 変 雨:	继索
軸受振動	μm _{P-P}	25		図2 発電機 最大出力は1	
効率	%	99			
水素消費量	m³ /日	12			

2.大容量化の技術課題

表1 発電機仕様

一般に,発電機の容量は以下の式で表される。

 $P D^2 \times L \times B \times A C \times N$

(P:発電機出力,D:回転子外径,L:鉄心長,B:磁気装荷, AC:電気装荷,N:回転速度)

発電機の大容量化のためには,発電機体格の大型化,固 定子巻線の高電圧化および大電流化が伴う。

発電機体格の大型化については,径方向寸法および軸方 向寸法増加が考えられるが、それぞれについて技術的課題 が生じる。例えば,径方向寸法増加は,回転子シャフト, ウェッジ,リテイニングリングなどの各部応力増加を伴うため, 材料強度向上および応力を低減するような構造が必要にな る。軸方向寸法増加は、軸振動の感度が高くなり、振動制 御が難しくなるため、より高度な制振技術が必要になる。

固定子巻線の高電圧化、大電流化については、高電圧絶 縁の開発および効果的な冷却方法の確立が求められる。ま た,固定子巻線の大電流化に伴い,固定子鉄心端部におい て漏れ磁束が増加し,鉄心温度が局部的に上昇するため, 端部構造の最適化および効率的な冷却が必要である。

量増加の歴史

30 MVAと ,先行機に対して約1.6倍の増加となる。

3.1,120 MVA 50 Hz発電機の開発

この発電機には、性能および信頼性向上のために、さまざ まな設計技術を適用した。それらの設計技術のうち,代表的 なものについて以下に述べる(表2参照)。

表2 技術課題と適用技術

発電機大容量化のために各種技術を適用している。

技術課題		適用技術		
大電流	固定子巻線冷却	混合素線異断面巻線 540 トランスポジション 水電気一体接続構造 亘り別冷却構造 大径絶縁ホース		
化 固定子卷線端部支持構造		テトラロック構造		
高 固定子鉄心端部構造		シールドコア ,銅板シールド		
電圧化	回転子巻線冷却	通風セクションピッチ最適化による 高冷却化		
	クーラ構造	トップドーム式上置きクーラ構造		
	固定子巻線絶縁	高電圧対応耐熱クラス155(F)絶縁		
	口出しブッシング	水素直接冷却ブッシング		
大型化	回転子軸材料	高強度·高靭性軸材		
	リテイニングリング材料	高強度18 Mn-18 Cr鋼		
	回転子断面形状	最適設計による応力低減		
	ステータフレーム	コンパクトフレーム		
	大口径軸受	中央溝付き橋(だ)円軸受		

3.1 機内水素圧力

回転子および固定子鉄心をより効率的に冷却するために, 機内水素圧力として,先行機の0.41 MPa・gに対し,0.52 MPa・gを採用した。熱伝達率は絶対圧力の0.8乗に比例する ため,約17%の熱伝達率向上が見込まれる。機内水素圧力 0.52 MPa・gは,これまでに原子力用発電機および火力用 1,000 MVAクラスの60 Hz機で採用実績がある。

3.2 回転子振動

大容量化するうえで、先行機に比べて、ボディ長を2割程 度伸ばしたのに伴って振動感度が上昇するため、振動解析 により、各振動モードを予測しながらシャフト構造、寸法を決 定した。その際、以下の項目を設計に反映した。

(1) 制振のため,発電機タービン側軸受は,先行機の軸受に対して,軸受径を約15%大きくした。

(2)振動モードのうち,コレクタリング側軸受端部の固有値が 100 Hz付近になるのを防ぐため,軸端部に設置している防振 軸受の径を先行機に比べて3割程度太くし,かつ軸端部まで 一体構造とするなど,軸端部の剛性を向上させた。

また,軸ねじりモードについても解析を行い,定格回転周 波数の2倍周波数(100 Hz)から外す設計とした。

3.3 回転子応力

回転子外径を,先行機に比べて1割程度大きくした。このとき,遠心力は約2割大きくなる。そこで,局部応力,起動停止に伴う疲労を考慮して,コイルスロット,ウェッジ形状の最適化を行い,応力,疲労の安全率が実績以上になるように設計した。

3.4 回転子温度上昇

回転子は,水素ガスによって直接冷却される。定格界磁電 流は5,000 A程度と,これまでの2極機実績で最大クラスにな るため,詳細解析によって風量,界磁巻線温度を予測し,通 風孔形状,位置などの通風構造に反映した。使用した回転 子温度解析ツールは,妥当性確認のため,回転子巻線に熱 電対を埋め込んで,局部温度分布を類似機において測定し ている。

また,解析は,固定子,回転子を含めたネットワーク通風, 温度解析を行い,固定子やエアギャップによる冷却ガスの温 度上昇も同時に計算した。

3.5 水冷却固定子卷線

固定子巻線は,中空素線と中実素線の混合素線とするこ とでコイル高さ寸法を抑え,かつ,素線寸法が上底で異なる 異断面コイルを採用することで,発生損失を低減した。発生 損失を最小に抑えるため,詳細な損失計算ツールを用いて,

図3 固定子巻線冷却水温度解析 各中空素線に流れる冷却水の温度を解析した。

トランスポジションピッチと素線配列を最適化した³。固定子巻線冷却水温度解析結果を図3に示す。また,上底コイルシリーズ接続部には水で直接冷却する水・電気一体型構造を採用することで,さらなる冷却効果の向上を図っている。固定子巻線をいっそう効率的に冷却するため,スロット内の巻線冷却用とは別に,亘(わた))線単独の通水ルートを設けた。固定子冷却水増加については,大口径絶縁ホースを採用することで対応した。

3.6 固定子巻線用27 kV絶縁

固定子巻線の主絶縁には、環境負荷低減型エポキシレジ ン注入絶縁システム「Super HI-RESIN」やを採用した。固定 子巻線形状の長大化に対応したレジン含浸技術を用いて製 作を行い、定格27 kVに対して優れた絶縁性能を有すること を検証した。また、コイルエンド部の電界緩和層には、高電圧 領域まで安定した電位分布が得られるように最適化された非 線形性抵抗材を採用した。

3.7 固定子鉄心端部

電機子電流の増加に伴い,端部漏れ磁束が増加するため,鉄心端部の過熱が問題となる。そのため,鉄心端部磁界解析を行い,端部段付き部,シールドコア,銅板シールドなどの形状最適化を図った(図4参照)。

3.8 固定子巻線端部支持構造

端部支持構造を決定するうえでは,電機子電流が,2極機 実績で最大クラスとなるため,短絡時に固定子巻線端部に発 生する電磁力を磁場解析によって予測し,その電磁力を用い て応力解析を行った。また,固定子巻線端部の固有振動数 解析を行い,固定子巻線端部の円環1次モード固有振動数 を,定格運転時の電磁振動周波数100 Hzから外すよう,固 定子巻線端部回りの構造を決定した。

図4 三次元磁界解析

固定子鉄心回りの磁束分布,発生損失の詳細解析により,鉄心回りの構造 最適化を行った。

3.9 ステータフレーム振動

2極50 Hzの発電機では,固定子鉄心が電磁力によって 100 Hzで振動する。ステータフレームと固定子鉄心間の振動 絶縁をするために,固定子鉄心支持構造にバネを用いて,振 動絶縁を行っている。これらの構造をモデル化し,固有振動 数および振幅の解析を行い,ステータフレームの構造設計に 反映した(図5参照)。

4.性能評価試験

各試験において,設計仕様を満足することを確認した。 温度試験においては,固定子巻線温度(抵抗温度計),固 定子冷却水温度(熱電対),および回転子巻線平均温度(抵 抗法)が制限値以下であることを確認した。また,固定子鉄 心端部,シールドコア,銅板シールドについても熱電対で温度 を測定し,温度上昇が制限値以下であることを確認した。

振動測定においては,各温度試験時における軸振動,軸

執筆者紹介

村松 誠二郎 2001年日立製作所入社,電力グループ 日立事業所 電力設計部 所属 現在,タービン発電機の設計に従事

宮川家導 1991年日立製作所入社,電力グループ 日立事業所 電力設計部 所属 現在,タービン発電機の設計に従事

図5 ステータフレーム振動解析モデル

固有振動数が実測と合うモデルを作成し,固有振動数および振動振幅を予 測した。

受振動が制限値以下であることを確認した。

また,コイルエンドやステータフレームについても固有振動数,振動振幅を測定した。測定結果は設計予想と近い値であり,振動絶縁が十分であることを確認した。

5.おわりに

ここでは ,1,120 MVA 50 Hz発電機に適用した技術につい て述べた。

今回の納入実績を基に,今後,いっそうの大容量化の検討と,国内外の大型火力発電プラントのニーズに応えていく。

参考文献

- 1) 立石,外:海外EPC火力発電への取り組み 米国ミッドアメリカンプロジェ クトの計画概要 ,日立評論,87,2,165~170(2005.2)
- 2) 古賀,外:1,000 MVA級火力タービン発電機の製作,電気学会東京支部 茨城支所研究発表会,B12(2005.11)
- 3) 高橋,外:大容量タービン発電機4列レーベル転位巻線の循環電流解析, 電気学会回転機研究会資料,RM-03-118(2003.10)
- 4) 小野田,外:発電機固定子コイルの新エポキシ絶縁システム,電気学会研 究会資料,DEI-04-53(2004.1)

高橋和彦 1989年日立製作所入社,日立研究所 モータイノベーショ ンセンタ 所属 現在,大型回転電機の研究開発に従事 電気学会会員,日本応用磁気学会会員

岩重 健五

1983年日立製作所入社,電力グループ 電力・電機開発 研究所 流体科学プロジェクト 所属 現在,発電機冷却技術の研究開発に従事 工学博士 日本機械学会会員,可視化情報学会会員

小野田満 1983年日立製作所入社,電力グループ 日立事業所 電力設計部 所属 現在,発電機の絶縁開発業務に従事 電気学会会員