原子カタービンの信頼性確保技術 一実証試験設備による開発— Highly-reliable Design Technology of Steam Turbine for Nuclear Power Plant 中村建樹 Tareki Nakamura 磯部展宏 Nebuhiro Isobe

瀬川清 Kiyoshi Segawa

磯部展宏 Nobuhiro Isobe 斉藤高 Takashi Saito

図1 蒸気タービン実証試験設備

実機タービンを模擬したモデルタービンにより、蒸気負荷運転中での振動およびタービン内蒸気流れ場を計測・確認する。

地球温暖化対策, CO2削減のために大型原子力発電が担 う役割が着実に大きくなる中で,発電プラントの主機である蒸 気タービンには,以前にも増して大型化・高信頼化・高効率 化のニーズが高まっている。特に蒸気タービンの低圧段長翼 は,タービン効率および出力にかかわる最も重要なコンポー ネントであり,日立は,これまでに最新知見を基に設計を行い, 高信頼性と高効率のニーズに応えた設計開発を進めてきた。

2006年に確認された新知見事象によるABWR(改良型沸 騰水型原子炉)低圧タービン12段(L-2)翼損傷事象に対して, 最新の解析技術で新翼の設計・強度信頼性検証を実施し, 新たに導入した実証試験設備で建設・増強した実機大モデ ル回転試験とモデルタービン蒸気負荷試験を行った。

1. はじめに

原子力発電プラントにおいて,蒸気タービンはエネルギー変 換機器として重要な主機であり,以前にも増して大型化・高信 頼化・高効率化のニーズが高まっている。日立は,原子力機 用として60 Hz 1,800 rpm機,および50 Hz 1,500 rpm機で 52インチまでの低圧最終段長翼を有する蒸気タービンの設計 開発を行い,実機適用している(図1,図2参照)¹⁾。この設計 開発においては,近年著しく高速化・高精度化している解析 技術ならびに試験による検証を行っている。

ここでは、2006年に中部電力株式会社浜岡原子力発電 所5号機、および北陸電力株式会社志賀原子力発電所2号 機において確認されたABWR (Advanced Boiling Water Reactor:改良型沸騰水型原子炉)低圧タービン12段(L-2)翼 の損傷に対して、長期的対策である新翼の設計・強度信頼 性検証として実施した最新の解析技術²¹と、実機大モデル回 転試験およびモデルタービン蒸気負荷試験について述べる。

図2 60 Hz 1,800 rpm機52インチ低圧最終段長翼採用の蒸気タービン外観

60 Hz 1,800 rpm機52インチ低圧最終段長翼を採用した蒸気タービンの外 観イメージを示す。

2. 最新流体解析技術の適用と新翼開発

2.1 最新流体解析技術による損傷原因の究明

60Hz 1,800 rpm機52インチ低圧最終段長翼を採用した蒸 気タービンを対象とした,最新スーパーコンピュータを用いた多 段落準三次元非定常流体解析により,(1)低負荷時に従来 はL-0段あるいはL-1段までしか影響しないと考えられていた主 流の渦流域が,L-2段まで影響してL-2翼にランダム振動が発 生すること,(2)負荷遮断時の給水加熱器からの蒸気逆流 (フラッシュバック)による動翼振動が,ランダム振動と重畳する ことの二つの新知見が確認された。これにより,疲労限を超 える振動応力が作用したことが,従来L-2翼損傷の原因と確 認された(図3参照)。

図3 損傷×カニズムおよびタービン内部流動シミュレーション結果 最新スーパーコンピュータを用いた多段落準三次元非定常流体解析による解 析結果を示す。

この多段落準三次元非定常流体解析は、多段落間蒸気 流れを比較的短時間で解析でき、タービン内フローパターン設 計の高速化・高精度化を可能としている。

2.2 新翼開発の基本方針と構造

前述の対策において,低負荷時の主流の渦流域や負荷 遮断時のフラッシュバックは,運用上避けられない事象である。 そこで,長期的対策である新翼の設計開発にあたっては,今 回の動翼損傷の要因となった非定常流体力に耐えられるよう に,高減衰化によって翼に作用する振動応力を低減させる方 針とした。高減衰化の具体的な手法として,構造減衰を増加 させるために有効な回転時の翼のねじり戻りにより,隣り合う 翼どうしのカバーが連結するCCB(Continuous Cover Blade) を採用した(図4参照)³⁾。

今回の新L-2翼開発では, 翼損傷事象の重大性を考慮し, 事業者に設計・開発・検証の各段階に参加してもらうとともに, 専門家諸氏によるレビューを要請することとした。また, 流体 解析と構造解析によって強度信頼性を確認した後に, 実証 試験によって検証するという手順を採った。

3. 信頼性検証試験の設備と特徴

3.1 信頼性検証試験の方針

新翼を開発する際の強度信頼性は、最新の解析技術で確 認後、モデル試験を用いて評価と検証を行う。モデル試験は、 動翼の基本特性(固有振動数・減衰比など)を確認するため の実機大モデル回転試験と、動翼に作用する蒸気加振力に 起因する振動応力およびタービン内蒸気流れ場を計測確認 するモデルタービン蒸気負荷試験から成る。

注:略語説明 CCB(Continuous Cover Blade) 図4 新L-2翼構造と従来L-2翼構造の比較

新L-2翼は長期にわたって非定常流体力に耐えられるように、回転時の翼の ねじり戻りによって隣り合う翼どうしのカバーが連結するCCBを採用した。

3.2 実機大モデル回転試験設備

実機大モデル回転試験設備の外観を図5に示す。これは, 実機翼と同仕様の試作翼を組み込んだ実機大試験ロータに より動翼の基本特性を検証する試験設備であり,加振装置 によって実機負荷相当振動応答下での試験計測・検証が可 能である。

計測装置は、従来用いられているひずみゲージ-テレメー タ方式のほかに、非接触センサーによる全翼の振動特性計 測を行っている。

3.3 蒸気タービン実証試験設備

モデルタービン蒸気負荷試験を行う蒸気タービン実証試験 設備の外観を図6に示す。実機タービンを模擬したモデルター ビンにより、蒸気負荷運転中での動翼に作用する振動応力を 計測できる。また、航空機エンジンやロケット開発に使用して いる最先端センサーを採用することで、タービン内蒸気流れ 場の直接計測を可能としている。

図5 実機大モデル回転試験設備の外観 実機負荷相当の加振力下での振動特性を検証する。

図6 蒸気タービン実証試験設備 実機タービンを模擬したモデルタービンによる実証試験が可能である。

図7 蒸気タービン実証試験設備の中央制御室と画面例 タービン運転状態と計測を一括管理・制御する。

図8 蒸気タービン実証試験での計測装置 モデルタービン内部の蒸気流れ場を自動計測することが可能である。

モデルタービンは実機と同一の車室と抽気構造を有し,低 負荷運転時には回転数を維持し,負荷遮断時には瞬時に発 電機モードからモータモードに移行可能なインバータモータ発 電機を採用し,フラッシュバック模擬用のタンクを備えた特徴 を持つ。

試験設備の制御は、図7に示す中央制御室で行う。運転 状態と計測を一括管理および制御することにより、精度の高 い試験と計測を省力化して実施している(図8参照)。

図9 従来L-2翼(左)と新L-2翼(右)のキャンベル線図 運転回転数において、共振点からの十分な離調を確認した。

3.4 試験結果

実機大モデル回転試験では,新L-2翼の基本特性である 固有振動数を測定し,運転定格回転数において共振点が十 分に離調できていることを確認した(図9参照)。CCB構造の 採用により,共振応答曲線から算出した減衰比は従来L-2翼 の数倍であることを確認した。

モデルタービン蒸気負荷試験の結果,低負荷時の逆流域 は,最新スーパーコンピュータを用いた準三次元非定常流体 解析結果と同様に,L-2段まで及んでいることを確認し,解析 精度を検証した。さらに,新L-2翼の振動応力は,減衰比の 増加によって従来L-2翼損傷発生時に比べ大幅に低減され, 疲労限に対して十分な裕度を有していることを確認した(図 10参照)。

3.5 今後の展望

実証試験設備では、実機を模擬した各種モデルタービンの 試験を実施中であり、試験により得られたデータ分析と評価 結果を翼の設計開発に反映することで、高性能・高信頼性 タービンの需要に応えていく。

執筆者紹介

中村 建樹 2004年日立製作所入社,電力グループ 日立事業所 ター ビン設計部 所属 現在,蒸気タービン本体の開発・設計に従事

瀬川 清 1990年日立製作所入社, 電力グループ エネルギー・環境 システム研究所 ターボ機械研究開発センタ 所属 現在, 蒸気タービンの研究開発に従事 日本機械学会会員, ターボ機械協会会員

図10 負荷遮断時の翼溝部振動応力

新L-2翼では、翼軽量化による翼溝部疲労限向上と高減衰化による振動応 力低減により、疲労限に対して十分な裕度を確保した。

4. おわりに

ここでは、ABWR低圧タービン用新L-2翼開発に用いた最 新解析技術の概要と各種実証試験設備、およびその結果に ついて述べた。

この最新解析技術と実証試験設備の活用により, 顧客の ニーズや環境負荷低減に応える高信頼性と高効率を両立し た技術開発が可能である。

CO₂削減の有力な手段として,近年重要性が急速に高 まっている次期火力・原子力タービンの設計開発にあたり,今 後もさらなる高信頼性・高効率タービン技術の研究開発を進 めていく考えである。

参考文献

- 梶山,外:中部電力株式会社浜岡原子力発電所第5号機の建設,日立評 論,87,2,193~198(2005.2)
- 2) 奥野,外:シールー体タービン翼段落解析,日本機械学会計算力学講演 会講演論文集,No.640(2008.11)
- 3) 工藤,外:世界最大環帯面積の48インチ鋼製タービン最終段動翼,日立 評論,88,2,197~200(2006.2)

1993年日立製作所入社,日立研究所 エネルギー材料研 究部 所属 現在,構造物の強度信頼性に関する研究開発に従事 工学博士

日本機械学会会員,日本材料学会会員,日本ガスタービン学会会員

斉藤 高

1982年日立製作所入社,日立GEニュークリア・エナジー株 式会社 原子力技術本部 原子力予防保全技術部 所属 現在,原子力発電所の予防保全計画の取りまとめに従事