

MRI (核磁気共鳴撮像)の技術開発が進展し、中枢神経系の新し い臨床アプリケーションが生まれつつある。動きに対する感受性を 抑えた新撮像技術は、動脈硬化性粥腫(プラーク)の性状検査精 度を高めることができる。また、脳血行動態を造影剤なしに観察で きる技術や、腫瘍の鑑別診断にかかわる情報が得られるMRスペク トロスコピーの実用性の向上もなされた。

今後, これらの新技術の普及により, 中枢神経系疾患の診断, 治療の一段の向上が見込まれている。

1. はじめに

MRI (Magnetic Resonance Imaging:核磁気共鳴撮像)は、 核磁気共鳴現象を利用し,生体を主に構成するプロトン(水 素原子核)の物理化学的な状況を計測する。すなわち,超 電導磁石(もしくは永久磁石)で作る均一な静磁場中で、 生体内のプロトンの磁気共鳴信号を得て,その密度分布と スピンの緩和過程を反映した信号を二次元,三次元で画像 化する。X線や放射性同位元素を使う診断方法と比べると, 電離放射線による被ばくがなく,軟部組織の濃度分解能に 優れる。MRIは,腫瘍や脳梗塞,血管病変などを明瞭に 描出できるため,中枢神経系,体幹部,整形領域など全身 の診断に用いられる。特に,脳と脊髄診断に不可欠な画像 化技術であり¹⁾,現在,国内で約6,150台のMRI装置が稼 働している。

近年の技術動向として,高磁場化によるSNR (Signal to Noise Ratio)の向上・コントラスト向上・空間分解能の向 上が進んでいる。また,プロトンの化学的な性質を利用し, MR (Magnetic Resonance)信号を磁気共鳴スペクトルに分 離して計測するMRS (Magnetic Resonance Spectroscopy)

(a) 1.5 T MRI \lceil Echelon Vega \rfloor

注:略語説明 MRI (Magnetic Resonance Imaging)

(b) 1.2 TオープンMRI「OASIS」

図1 1.5 T MRI装置と1.2 T オープンMRI装置の外観

1.5 Tでは、筒状超電導磁石で水平方向に静磁場を発生する。1.2 Tでは、対向型超電導磁石で垂直方向に磁場を発生し、撮像領域周辺をオープン化している。

ture article

では、生体内の代謝物質の状態を検知でき、生体機能情報 の画像化CSI(Chemical Shift Imaging)へと発展している²⁾。

株式会社日立メディコは、永久磁石を使った中低磁場 オープンMRIの開発を世界的にもリードしている。2006 年には超電導磁石を使った高磁場MRI市場に再参入し、 フルラインアップのMRIベンダーとしてシェアアップを めざしている³⁾(図1参照)。前述した技術動向や市場動向 を踏まえ、高磁場MRIの特長を生かした撮像技術と臨床 アプリケーションの開発を行い、高度な臨床画像の提供に よって医療の質の向上を進めている。

今回,高磁場MRIの画質の特長を生かして,脳梗塞を 誘発する頸(けい)動脈狭窄(さく)症の新しい画像化技術 と,脳腫瘍の鑑別診断を従来よりも容易に行える技術を開 発した。

ここでは、中枢神経 MRIのアプリケーション開発について述べる。

2. 臨床的なニーズとソリューション

脳卒中は、急速な高齢化に伴って増加しており、患者数 は300万人近くに上る。また要介護の最多原因疾患である。 脳卒中の約⁴は脳梗塞に由来する。脳梗塞の中ではアテ ローム血栓性脳梗塞が約 まを占める。そして、血栓性脳梗 塞の主原因の一つは、頸動脈プラークによる血管狭窄・閉 塞である。脳梗塞・脳血管障害についてはMRIで多くの 情報を得ることができ、臨床診断に多用される¹⁾。

頸動脈プラークの存在診断についてはまず超音波でなさ れ、その後、CT (Computed Tomography)やMRIでの狭 窄率の判定に従い治療を行う。外科的治療は頸動脈内膜剝 離術、もしくは頸動脈ステント留置術である。外科治療を さらに安全にするには、危険因子である脂質・出血プラー クと安定な線維性・石灰化プラークとを区別することが重 要であるが、従来の技術では必ずしもこれが実現できてい なかった。

近年,日立メディコが開発したRADAR (Radial Acquisition Regime: ラディアル撮像法)により,拍動する頸動脈 を動きのアーチファクト (偽像)を低減して描出すること が可能となった。この技術を頸動脈プラーク診断に適用す ることで,従来よりも正確に危険因子を区別できる可能性 が出始めた⁴⁾。

頸動脈狭窄の重篤度は、単に血管狭窄率だけでなく、左 右頸動脈の脳支配領域で判断される。従来のMRIでは、 Gd (ガドリニウム)造影剤を使うことによってある程度は 血行動態を知ることができたが、確定的な診断には SPECT (Single Photon Emission Computed Tomography) やX線造影検査が必要である。侵襲性の低いMRIで脳血 流計測が可能になれば、脳卒中や頸部狭窄症の術前診断・ 術後の経過観察などが容易になる。

MRS/CSIは、脳神経領域において、腫瘍・膿(のう)瘍・ 変性・脱髄疾患の鑑別に有用な情報が得られ、MRIの補 助的な計測として有用である。MRSを一般臨床で広く普 及させるには、計測時に行うマニュアル調整・計測データ 処理の削減が必要であった。

3. 撮像技術

3.1 RADAR

RADARの原理を図2に示す。通常のMRI撮像法に比べ, 空間周波数座標(=計測空間)の原点を多重に計測するこ とから,動脈の拍動アーチファクトが大幅に抑制される効 果がある。他方,計測空間を全方向から走査するため,走 査するための傾斜磁場パルスとそれに伴う渦電流を高度に 制御する必要があり,高画質のための撮像至適条件が臨床 要求に合わないことや,画質が撮像条件で著しく異なるな どの制約が生じ,臨床普及の課題になっていた。これに対 し,日立メディコは,傾斜磁場パルス制御に伴う計測信号 ひずみを計測信号自体の複素情報から推定して補正するア ルゴリズムを考案し,RADARの完成度を高め,臨床実用 化した⁵⁾。

3.2 セレクティブMRA

右もしくは左の頸動脈をペンシルビームRF (Radiofrequency) パルスによって空間選択的に励起しつつ,TOF (Time of Flight) 法による脳血管撮像を行う技術であるセ レクティブMRA (Magnetic Resonance Angiography) を開 発した。この技術の実現には,左右の頸動脈と椎骨動脈か ら一本を選択的に抑制する必要があった。詳細な検討の結 果,脳底部のトルコ鞍(あん)下部から鼻根部,および

注: 略語説明 RADAR (Radial Acquisition Regime: ラディアル撮像法) 図2 RADARの原理(空間周波数座標での走査軌跡と画像化処理) RADARは通常撮像法と比較して体動のアーチファクト(偽像)が少ない。 特長として,(1)位相エンコード(ky)方向のアーチファクト収束がない,(2) k空間中心部分の積算効果,および,(3)ブレード/エコーごとの信号補正 が挙げられる。 錐(すい)体骨から斜台に沿って直径30 mmのRFビーム を斜方向から当てることで、安定かつ容易に選択励起でき ることがわかった。そこで、任意の方向のRFビームにつ いてビーム形状 (プロファイル)の誤差を抑制する技術と, RFビームを被検者の頭部形状に合わせて容易に位置決め できる GUI (Graphical User Interface) を開発した。

3.3 MRS/CSI

日立メディコは、MRS/CSIの自動計測・自動スペクト ル解析を実現するため、静磁場不均一調整・共鳴周波数検 索,水信号抑制最適化などのプリスキャンを全自動化し, 主要な生体代謝物のスペクトルピークを自動分析する機能 を搭載した⁶。また、生体内の代謝物の二次元マップを計 測するCSIにもこの考えを適用し、大幅に検査ワークフ ローを改善した。

4. 臨床適用結果

4.1 RADAR

従来のMRIでは体動アーチファクトを抑制するために 心電同期撮像としていたが、岩手医科大学での緻密な検討 から、患者ごとに心拍数、すなわち高周波磁場の印加繰り 返し時間 (TR: Repetition Time) が異なるために MR 画像 上でプラーク性状と画像コントラストの対応が不明瞭であ ることが判明した。一方,非同期撮像でRADARを行うと, 体動アーチファクト抑制と一定の画像コントラストが得ら れ、プラーク性状とコントラストの関係が明瞭になること がわかった4)。

RADARによるプラーク撮像例と、プラーク性状の空間 分布をさらに明確に示すためプラークをカラー表示した例 を図3に示す。この技術は、プラークの手術適用の可否や 治療後の経過観察,薬剤投与効果の検証などに期待される。

(a)RADAR-SE, 非同期T1強調画像

〔(a)の点線部分拡大〕

図3 RADARを使った頸(けい)動脈プラークイメージング MRIの頸部プラークイメージングではプラークの性状判別にT1強調コント ラストが重要である。そのため、頸部T1強調撮像には体動アーチファクト がないスピンエコー(SE) ラディアルスキャンを用いる。

4.2 セレクティブMRA

セレクティブMRAを用いると、選択励起側の血液信号 が抑制され、反対側頸動脈から流入した血液が脳内をどの ように循環するかが明瞭にわかった(図4参照)。このこ とから,狭窄側半球への側副血行路の有無や、ウイルス輪 を経由するバイパスの存在 (クロスフロー) が画像化され

図5 MRSのワークフロー実例〔大脳神経膠(こう) 腫症〕 6種類のMR撮像が22分、MRS検査が5分になり、約30分で腫瘍の鑑別診断 が可能となった。

た。すなわち、X線造影検査に近い画像を造影剤やX線の 被ばくなしに得られた。

4.3 MRS/CSI

自動化したMRSにおける検査ワークフローの実例を 図5に示す。通常の検査として6種類のMR撮像を22分で 行い, MRS検査の5分を追加し, 患者の搬入出を含めて 約30分の検査枠で腫瘍の鑑別診断までが可能であった。

5. おわりに

ここでは、中枢神経 MRIのアプリケーション開発につ いて述べた。

RADAR, セレクティブMRA, MRS/CSIなどの開発を 進めることにより、脳卒中や脳腫瘍の検査に、新たな診断 情報を加えることができた。この結果、治療の危険因子が 正確にわかり、経過観察がより精度よく行えるなどのメ リットが生まれ、治療方針がさらに明確、正確になる。

今後も、これらの検査精度の高い診断法を標準化してい くことで、医療の質の向上に貢献していく。

参考文献

- 1) ナル (20094)
- 2) 高橋:MRI等医療機器の開発の現状,日本機械学会誌, vol.110, no.1058, p.11 ~14 (2007.1)
- 3) 高橋: オープンMRIとインターベンショナルMRI, Medical Imaging Technology, vol.27, no.2, p.103~111 (2009.3)
- 4) S. Narumi, et al.: Altered carotid plaque signal among different repetition times on T1-weighted magnetic resonance plaque imaging with self-navigated radial-scan technique, Neuroradiology, vol.52, no.4, pp.285-290 (2010.4)
- 5) M. Takizawa, et al.: Modified echo peak correction for radial acquisition regime (RADAR), Magnetic Resonance in Medical Sciences, vol. 8, no. 4, pp.149-158 (2009)
- 6) 平田, 外:1.5TMRIシステムEchelon VegaにおけるワンボタンMRスペクトロ スコピーの有用性, MEDIX, vol.50, p.20~23 (2009)

執筆者紹介

高橋 哲彦

1982年日立製作所入社,株式会社日立メディコ MRIシステム本 部 アプリケーション開発部 所属 現在、MRIの新機能の研究開発に従事 工学博十

日本磁気共鳴医学会代議員,日本医用画像工学会会員,IEEE会員, 国際磁気共鳴医学会会員

板垣 博幸 1991年日立製作所入社,株式会社日立メディコ MRIシステム本 部 アプリケーション開発部 所属 現在、MRIの新機能計測の研究開発に従事 日本磁気共鳴医学会会員

瀧澤 将宏

ケーション開発部 所属 現在MRIの新機能の研究開発に従事 日本医用画像工学会会員、日本磁気共鳴医学会会員、日本放射線 技術学会会員

2004年株式会社日立メディコ入社, MRIシステム本部 アプリ ケーション開発部 所属 現在、MRIの新機能の研究開発に従事 日本磁気共鳴医学会会員

1991年株式会社日立メディコ入社、マーケティング統括本部 アプリケーション部 所属 現在MRIの新機能の開発支援に従事 日本磁気共鳴医学会会員, 日本放射線技術学会会員

工藤 與亮

森分 周子

1995年北海道大学医学部放射線科入局, 2008年岩手医科大学 先端医療研究センター 超高磁場診断・病態研究部門 講師,神経 放射線科医 医学博士. 放射線科専門医 日本医学放射線学会会員,日本神経放射線学会会員,日本磁気共 鳴医学会会員,北米放射線学会会員,国際磁気共鳴医学会会員

佐々木 真理

1988年岩手医科大学中央放射線部入局,先端医療研究センター 超高磁場MRI診断·病態研究部門 教授 現在、神経放射線診断学の研究に従事 医学博士, 放射線科専門医 日本医学放射線学会代議員, 日本磁気共鳴医学会教育委員長, 日本 神経放射線学会評議員、日本脳卒中学会評議員・システム委員・ 専門医試験委員、日本脳ドック学会MRI診断標準化委員長、北米 放射線学会会員, 国際磁気共鳴医学会会員

33

fea

ture

article