

日立の電子顕微鏡技術

科学技術の発展は計測技術の進化ととも に歩んできたといっても過言ではない。日立 製作所の企業理念に「優れた自主技術・製 品の開発を通じて社会に貢献する」とある が,日立グループでも計測技術は重要な技 術として位置づけられてきた。例えば、電 子顕微鏡はその黎(れい)明期から開発に 着手し、本誌第25巻第8号(1942年8月 号)に、早くも実験結果が論文として発表 されている (図1参照)¹⁾。この論文は基礎 データを得るために開発されたTEM (Transmission Electron Microscope: 透過 電子顕微鏡) 試作一号機に関するものであ るが、電子レンズ、電子源はもとより、試 料作製,機械的振動や高圧電源安定度の問 題,操作性など主要な技術課題を全て指摘 しており,日立の電子顕微鏡技術開発の礎 ともいえる。また、二号機の「HU-2^{**}」を 1942年12月に名古屋帝国大学(当時)に 納入した(国産初の商用TEM)²⁾。戦後, TEMは欧米へも盛んに輸出されることと なる。1964年からは、半導体の研究に SEM (Scanning Electron Microscope: 走查 電子顕微鏡) が活用^{3),4),5)}され,1969年 には日立初の商用SEM「HSM-2」を発売 した。

分解能にブレークスルーをもたらしたの は**電界放出 (FE) 形電子源**^(a)の実用化であ る。FE電子源の発明者である米国シカゴ 大学のAlbert V. Crewe教授の指導を受け, 1972年には国産初の商用FE-SEM「HFS-2」を発売し、当時の一般的なSEMの三倍 を超える高分解能(3 nm)を実現した。そ の後、FE電子源を搭載した半導体ウェー ハ専用の測長SEM「S-6000」を1984年に 発売。1985年にはより超高分解能を実現 したインレンズFE-SEM「UHS-T1」を鳥 取大学に納入し、世界初のエイズウイルス のSEM像撮影に貢献した⁶。

FE電子源は,TEMにも搭載され,1978 年には中央研究所が80kVFE-TEMで 0.062 nmの格子像と磁力線の観察を報告, さらに250kVFE-TEMで,1982年に「ア ハラノフ・ボーム(AB)効果^(b)」を検証し, 1986年には,1982年の実験結果の裏付け を行い,完全実証した⁷⁾。

(a) 電界放出 (FE) 形電子源

FEはField Emissionの略。超高真空下で 先端が針状の陰極(電界放出素子)の先 端に強い電界(高電圧)を加えると,高 密度の電子が放出される電界放出現象を 利用した電子源(電子線をビーム状に照 射する装置)。輝度が極めて高く,高分 解能電子顕微鏡用の電子源として多く用 いられている。

(b) アハラノフ・ボーム (AB) 効果

「電子は、電場も磁場も存在しない空間 でも電磁ボテンシャルの影響を受ける」 という現象。FE電子源を使用した電界 放出形透過電子顕微鏡を応用した電子線 ホログラフィーにより実証された。

※ 社団法人電気学会「でんきの礎」顕 彰(2009年5月),独立行政法人国 立科学博物館「重要科学技術史資 料」(第00030号)登録(2010年度), 名古屋大学博物館で展示。

図1 | TEM (Transmission Electron Microscope) 試作機1号機「HU-1」¹⁾ 横型の磁場型透過電子顕微鏡で、日立研究所で試作された。

(c) IEEEマイルストーン

電気・電子・情報・通信分野の世界最大 の学会であるIEEEが、1983年に創設し た表彰制度。電気・電子・情報・通信の 分野において達成されたイノペーション の中で、開発から25年以上が経過し、 社会や産業の発展に多大な貢献をした歴 史的業績が認定を受けている。 このような継続的な科学技術への貢献が 認められ、「電界放出形電子顕微鏡の実用 化」に対し、2012年1月に日立製作所と株 式会社日立ハイテクノロジーズはIEEEマ イルストーン^(c)の認定を受けた。

この特集では、IEEEマイルストーン認 定を記念し、各種電子顕微鏡やその応用製 品を紹介するとともに、少し視点を広げて 日立の多様な計測技術も取り上げた。宇宙 や地球環境、プロジェクトの損益予兆検 知、さらには脳活動やコミュニケーション 状況など、多彩な計測技術を紹介する。

電子顕微鏡技術

電子顕微鏡は、電子源から放出され電磁 界により集束された電子を試料に照射し て、試料を透過したり、試料後方に反射・ 散乱した電子を検出することにより、画像 化する装置である。前者をTEM、後者を

図2 | SEM (走査電子顕微鏡)の構成 走査電子顕微鏡の構成の概略を示す。

注:略語説明 ExB (E cross B), SE (Secondary Electron), BF (Bright Field), STEM (Scanning Transmission Electron Microscope), DF (Dark Field)

図3 | 走査電子顕微鏡の信号検出例 走査電子顕微鏡「SU9000」による信号検出例を示す。 SEMと呼び区別している。なおTEMには SEMと同様に試料上で電子線を二次元的 に偏向照射して透過した電子を検出する STEM (Scanning Transmission Electron Microscope:走査透過電子顕微鏡)もある。 (図2,図3参照)。

検出される電子は、大きく分けて、透過 電子や、入射電子によって試料の後方に散 乱したエネルギーの高い電子(反射電子) と、試料から放出されたエネルギーの低い 電子(二次電子)を検出する場合があり、 目的に応じて最適な方式を選択する⁸⁾。い ずれの場合も、微細計測では、電子ビーム の質(照射電子のエネルギー均一性や軌道 方向の一様性)が重要であり、その実現の ため、電子線を発生する電子源、電子線を 試料上に細く絞る電子光学系(対物レン ズ)、信号電子を検出する光学系の絶え間 ない改良が行われてきた。近年では、数十 pm(pmは1mの1兆分の1)の計測を可能 としている。

微細計測のニーズに応える電子顕微鏡

グリーンイノベーションに向けた各種技 術開発において,新材料・新デバイスへの 期待は大きく,その開発加速に向けた微細 計測のニーズが高まっている。

また, 医用・バイオ分野においては, ウ イルスの構造を観察することなどで新たな 知見を得て研究開発を加速する事例が増え ている。

半導体分野においては,ますます微細化 するデバイス開発や製造歩留まりの確保に 不可欠な装置となっている。

試料サンプリング技術

近年、とりわけニーズが増大しているの が試料雰囲気の管理である。リチウムイオ ン電池に使用されるリチウムは高活性な元 素であり、大気中の酸素や水分と反応して 容易に構造が変化する。この変質を防止す るため、雰囲気遮断試料ホルダーとグロー ブボックスを開発し、FIB加工装置と STEMを連携させて試験片作製から観察、

図4 | 小惑星イトカワ(写真提供:JAXA) 小惑星探査機「はやぶさ」が撮影した小惑星イトカワの 画像を示す。

分析まで不活性ガス雰囲気および真空中で 一貫作業できるシステムを実用化した。こ の設備と後述する「マイクロサンプリング」 は、JAXA (Japan Aerospace Exploration Agency:独立行政法人宇宙航空研究開発 機構)による、小惑星探査機「はやぶさ」 が小惑星「イトカワ」(図4参照)から採取 した微粒子の構造解析に活用された。

電子顕微鏡の観察対象となる10 μm角 程度の微小な目的箇所のFIB (Focused Ion Beam:集束イオンビーム)装置を用いた 摘出は,1999年に世界で初めて発売した 「マイクロサンプリング」により,好評を 博してきた(図5参照)。

装置に不慣れなユーザーでもこの摘出作 業を確実に実行できるよう,自動化が長ら く望まれてきたが,このたびFIB-SEM 「NB5000」で,微小試料(マイクロサンプ ル)をハンドリングするプローブ先端の目 標位置への自動接触機能を,プローブ吸収 電流像を用いることで実現した。この自動 微小試料摘出加工に要する時間は約11分 である。

また,摘出した微小試料をオペレータが メッシュ(直径3 mmの金属薄半円板) へ FIB-SEM 試料室内で固定し,その並べた5 個の微小試料を,TEMやSTEMで観察す るため,連続して深さ5 μmまで十分に薄 い薄膜を形成する作業を自動化した。1個 の微小試料あたり,約20分で自動的に薄 膜加工が可能である。

電子顕微鏡を身近に

—卓上型走査電子顕微鏡

最先端の研究用途の装置を開発する一 方,小型で身近に置いて,気軽に使える卓 上型の走査電子顕微鏡が製品ラインアップ

図5 マイクロサンプリングの概要

10 μm程度のサイズの微小試料だけを摘出し,専用のメッシュへ搬送し,薄膜化することによって 透過電子顕微鏡試料を作製する。

にある。光学顕微鏡のように簡単に扱うこ とができ、学校などで教育用途でも活用さ れている。オプションで元素分析機器も付 加できるため産業用途での活用も多い。

半導体プロセス管理ツール

別の大きな応用分野として,半導体のプ ロセス管理ツールがある。半導体の配線パ ターンは20 nm以下であり、その線幅は 0.2 nm程度で精度保証する必要がある。 SEMを応用することは計測手段として不 可避であるが,計測用途としては,計測再 現性、校正などを保証しなければならない という大きな課題解決が必要となる。日立 ハイテクノロジーズでは, 半導体の管理パ ラメータである線幅管理(CD:Critical Dimension) への電子線応用を世界に先駆 けて手がけ,以来,常に半導体の微細化に 合わせて精度向上, 安定性向上を図りつ つ, 高速化による生産性向上にも寄与して きた⁹⁾(図6参照)。近年では、パターンの 立体形状や積層パターンの重ね合わせ誤差 などの画像処理技術を活用したアプリケー ションや、計測情報を活用した問題箇所の 重点管理など,多様な計測が可能となって いる。

製造技術

高い分解能を実現するためには,超高真 空が不可欠である。一般にはあまり知られ ていないが,装置に使用する部品は,組み 立て前の徹底した洗浄と脱ガス処理によ

図6 | デバイス微細化に先行した像分解能と測定再現精度

パターン線幅の微細化 (1984年1,300 nmから2012年22 nm) に対応し, 測長SEMの像分解能を 15 nmから1.45 nmへ, 測定再現精度を15 nmから0.25 nmへ向上させた。

> り,部品レベルでの清浄度を高めた上で, 慎重に組み立てが行われる。

新しい計測手段

通常の電子顕微鏡は電子ビームを細く 絞って試料に照射し,試料からの電子を計 測するが,電子ビームを所定の面積(~ 100 µmø)で一様に照射し,試料表面で電 子ビームを減速反転させると,試料表面の 微小な凹凸や電位分布に応じた画像が得ら れる。この画像を電子光学系で拡大して二 次元画像を一括で取得できるのがミラー電 子顕微鏡である。電子顕微鏡の微細観察と いう特徴を生かしながら,ビーム走査を行 わないため原理的に高速化できる。まだ研 究段階だがナノメートルオーダーの観察に 成功しており,今後の実用化が期待されて いる(図7参照)。

3次元形状を直接計測する手段として, AFM (Atomic Force Microscope:原子間力 顕微鏡)がある。AFMは微細な探針を試 料表面に近接させ,相互に働く原子間力が 一定になるよう探針を位置制御しながら試 料表面をなぞることで立体形状を観察す る。測定精度は位置制御に大きく依存し, この精度向上には変位センサーとなる光干 渉計の高精度化・安定化が不可欠である。 フォトニック結晶を採用した新型干渉計の 開発により,従来は数nmであった変位感

図7 | ミラー電子顕微鏡の構成概念図 電子源から放出・加速された電子(行きの電子)は,加 速電圧よりわずかに大きい負の電圧を与えられた試料の 直前で反転する。その電子(帰りの電子)を結像する。

度を数十pmオーダーに改善し,また大き さ20×50×14 (mm)という世界最高感度・ 最小の変位センサーを開発した。このセン サーは2009年,2011年に米国R&Dマガ ジン社の「R&D 100 Awards」などを受賞し, 他の微細計測制御への応用が期待される。

社会イノベーションに向けた計測技術

環境・社会インフラ

空間解像度が50 cmレベルの高解像度衛 星画像が民間でも利用できるようになり, 地球環境変化として植生,社会インフラ設 備の管理や災害把握・復興支援などへの活 用が期待されている。日立は地球環境シ ミュレータを開発し,衛星画像から広大な 農作地域の生育状況把握,複数の画像を利 用した都市の三次元モデルから電波伝搬状 況や日照などのシミュレーションなどを可 能とした。

安全・安心

空港でのX線による不審物検知は周知だ が、爆発物から漏れ出る微量物質を高精度 に検知することで、爆発物の形状によらな い確実な検出が期待できる。また実運用に おいては、爆発物の携行者をいかに確保す るかが重要なポイントとなる。そこで、微 量物質検出技術と監視カメラによる人物追 跡技術を併用した爆発物探知システムを研 究している。今後,公共施設での活躍が期 待される。

人間活動・ビジネス

さらには、人間活動の計測として、脳活 動を血流の状態から計測する光トポグラ フィ、名札型センサーで組織内のコミュニ ケーションを測定・解析することで可視化 するビジネス顕微鏡がある。また、損益の 変動予兆を計測するプロジェクト管理手法 など、さまざまな対象、場面に向けた計測 技術が研究開発されている。

グループの計測技術を社会の発展に

日立グループでは電子顕微鏡や分析装置 をはじめとする計測システムの開発に加え

表1|日立グループの各種分析サービスの例

分析・計測ノウハウを技術コアとして、各種分析サービスを提供している。

社 名	分析サービス内容	webサイト
日立化成テクノサービス 株式会社	有機材料分析・評価,物性試験, 規制物質・環境測定	http://www.hitachi-chem-ts.co.jp/
習和産業株式会社	環境・材料分析,環境測定, 材料試験,水質検査,放射能・ 放射線測定	http://www.e-shuwa.jp/service/kankyo/
株式会社日立ハイテク マニファクチャ&サービス	材料分析・解析,電子顕微鏡用 試料作製	http://www.hitachi-hitec.com/ group/hms/HMSanalytical/
日立協和エンジニアリング 株式会社	環境・化学・物理・食品分析, 材料・解析評価	http://www.hitachi-kyowa.co.jp/ business/bunseki/
中央商事株式会社	物理・化学・環境分析	http://www.chuo-s.co.jp/ office/facility/eisei.html

て,分析・計測ノウハウを技術コアとして 試料前処理などを含めた各種分析サービス も提供している(表1参照)。

今後も、日立グループの計測技術・ソ リューションを社会イノベーション事業の 発展に活用し、社会の持続的な発展に寄与 していきたい。

参考文献

- 1) 只野,外:電子超顕微鏡の試作とこれに関する二三の実験,日立評論, 25, 8, 1-10, (1942.8)
- 2) 蛭薙:国産初の商用電子顕微鏡HU-2型が設置される、草創期の名古屋大学と初代総長渋沢元治、名大史ブックレット、6、25-27、 (2003.3)
- Higuchi, et al. : Measurement of the Lifetime of Minority Carriers in Semiconductors with a Scanning Electron Microscope, Japanese Journal of Applied Physics, 4, 316-317, (1965)
- 4) 樋口,外:走査型電子顕微鏡による半導体素子の観察,日立評論,48(2),45-49,(1966.2)
- Tamura, et al. : New Method of Detecting Secondary Electrons on Scanning Electron Microscope, J. Electron Microscopy. 17, 2, 106-111, (1968)
- 6) 田中:超ミクロ世界への挑戦―生物を80万倍で見る―,岩波新書,新赤版96,163-192,(1989.11)
- 7) 外村:目で見る美しい量子力学,サイエンス社,17-20,(2010.9)
- 8) 佐藤:ナノテクの世界をひらく超高分解能走査電子顕微鏡技術,日立評論,89,6,502~507(2007.6)
- 9) 大林:イノベーションを支える電子顕微鏡の進化 先端科学分析機器から工業用計測器へのパラダイムシフト、日立評論、91、11、806~811 (2009.11)

執筆者紹介

土井 秀明 1982年日立製作所入社,株式会社日立ハイテクノロジーズ研究開 発本部 第五部 所属 現在,電子デバイス・エレクトロニクス製品向け製造・検査技術の 研究開発に従事 技術士(電気電子,総合技術監理) IEEE会員,電気学会会員,日本技術士会会員

佐藤 貢

1982年日立製作所入社,株式会社日立ハイテクノロジーズ研究開 発本部所属 現在,電子顕微鏡の研究開発業務に従事 博士(工学) 日本顕微鏡学会会員

高口 雅成 1989年日立製作所入社,中央研究所 高度計測センタ 所属 現在,ナノ計測装置開発および材料・デバイス評価技術の研究に 従事

日本顕微鏡学会会員,応用物理学会会員

1989年日立製作所入社,株式会社日立ハイテクノロジーズ研究開

日本 日本 日本 日本 日本

1985年日製産業株式会社入社,株式会社日立ハイテクノロジーズ 科学・医用システム事業統括本部 事業戦略本部 科学システム事 業戦略部 所属 現在,電子顕微鏡の中長期的な事業戦略および事業開発に従事

日本顕微鏡学会会員,医学生物学電子顕微鏡技術学会会員

江角 真

1985年日立製作所入社,中央研究所 ライフサイエンス研究センタ

現在,超高圧電子顕微鏡の開発に従事 博士(工学) 日本顕微鏡学会会員,応用物理学会会員