feature articles 社会イノベーション事業を支える共通基盤技術の研究開発

上村理 土橋 高志 Kamimura Osamu Dobashi Takashi

近年,ニーズが拡大している環境・エネルギー・ライフサイエンス 分野に向けて,試料ダメージが少なく高分解能なイメージング技術 の確立をめざし,回折顕微鏡技術の開発を進めてきた。走査電子 顕微鏡に回折パターン記録機能を搭載した電子回折顕微鏡を試作 し,炭素六角格子(グラフェンシート)を一巻きした構造である単層 カーボンナノチューブの低エネルギー(30 keV)電子ビーム回折パ ターンと,計算機処理による原子配列像(分解能0.12 nm)を得る ことに成功した。軽元素で構成された立体的で複雑な構造体に対し て,低ダメージで高い分解能のイメージング技術として,材料およ びデバイス解析への適用が期待できる。

1. はじめに

電子顕微鏡はこれまで,半導体分野を中心に,材料およ びデバイス開発に適用されてきた。また,金属中の転位構 造の解明に向けた研究開発が盛んに行われた。近年は,環 境・エネルギーやライフサイエンスの分野でも,電子顕微 鏡のニーズが拡大している。この分野では,リチウムイオ ン電池の電極である炭素系材料に代表されるように,より 軽い元素でできた材料の解析が重要となる。

観察対象となる材料の変化は、解析技術に革新を求め る。軽元素材料では、照射する電子ビームによる試料損傷 (試料ダメージ)が課題となっている。より高い分解能, とりわけ原子分解能で観察を行う場合,これまではエネル ギーが高い電子ビームを用いたTEM (Transmission Electron Microscope:透過電子顕微鏡)が活用されてきた。 しかし、照射ビームで原子がはじき飛ばされる試料の損傷 (ノックオンダメージ)は高エネルギーほど顕著なため、 通常のTEMで用いられる200 keV程度のエネルギーで は、観察が短時間に限定されるといった課題が生じてい る。この課題を解決するには低いエネルギー電子顕微鏡で は、レンズ収差の影響によって原子レベルの分解能を得る ことは困難となっている。すなわち、今後の軽元素材料の 解析ニーズの拡大に対応するためには、試料ダメージの少 なさと原子レベルの分解能とを両立したイメージング技術 が求められている。

一方で、回折イメージング,もしくは回折顕微法と呼ば れる新たなイメージング手法が関心を集めている。この手 法では、電子ビームを試料に照射し、試料で散乱したビー ムが形成する回折パターンを取得して、計算機処理によっ て実像を再構成する。従来の電子顕微鏡がレンズの性能 (収差)で分解能が制限されていたのに対して、回折イメー ジングでの分解能は、計算機処理に用いる回折パターンを どこまで広く(広い回折角まで)取得するかで決まる。そ のため、レンズ性能に制限されない高分解能化が期待でき る。また、従来の周期構造を仮定した結晶構造解析とは異 なり、非周期構造の材料でもイメージングが可能なことも 特徴である。そこで、試料ダメージが少ない原子レベルイ メージングを実現するために、低エネルギーの電子ビーム に回折イメージングを組み合わせた解析技術の研究開発に 着手し、原子分解能の検証を行った。

ここでは,軽元素系複雑構造物質の低ダメージ観察を可 能とする回折顕微鏡技術について述べる。

2. 回折イメージング

回折イメージングの概略を図1に示す。試料に平行な ビームを照射し,試料から十分離れた位置に検出器を置く ことで,回折パターンを得る。回折パターンを記録する際 に失われてしまう位相情報を再生するために,反復位相回 復法を用いた計算機処理を行う。回折パターンからの振幅 情報と再生した位相情報とを合わせて,試料構造像(再構 成像)が得られる。

図1 回折イメージングの概略図

試料に平行なビームを照射し,回折パターンを記録する。反復位相回復法により,記録できない位相情報を再生し,試料構造像(再構成像)を得る。回折パター ンと再構成像は,実際に単層カーボンナノチューブを用いて得た結果を示した。

この手法は1952年にD. Sayre¹⁾によって可能性が示され たことに端を発している。しかし物質科学の分野では, 1999年にX線を用いて実証された²⁾のが初めてである。 これには,計算機技術の進展と第三世代の高輝度放射光が 寄与したものと考えられる。以後X線の分野では,微粒子³⁾, ウイルス⁴⁾,染色体⁵⁾,細胞⁶⁾などの三次元構造を得るま でに至っており,多くの適用事例が発表されている。一方, 電子顕微鏡の分野では,2002年⁷⁾以降幾つかのグループ で実証がなされているが,材料の構造解析を行っているの は200 keVと高いエネルギーを用いたものが主体である。 われわれは,試料ダメージが少なく高分解能な像を得るこ とを目的に,2004年から北海道大学と共同で低エネル ギー電子ビームでの実証に取り組んできた⁸⁾。

3. 電子回折顕微鏡

低エネルギー電子ビームでの原理検証は、反射電子回折の装置を改造したプロトタイプ実験機で行った⁸⁾。そして、 このプロトタイプ実験機での幾つかの課題(像観察時の分 解能が低いこと、フィルム搬送とシャッター開閉が手動で あったこと)を解決してこの手法をより実用的なものとす るために、SEM (Scanning Electron Microscope:走査電子 顕微鏡)をベースに低エネルギー電子回折顕微鏡の試作を 行った⁹⁾(図2参照)。

試作した低エネルギー電子回折顕微鏡では,通常の SEM鏡体の下に,回折パターンをフィルムに記録するた めのフィルム搬送機構を搭載した。また,回折パターンを モニタするために,CCD (Charge Coupled Device)カメ ラを搭載している。さらに従来の二次電子検出器に加え て,試料下に透過電子検出器を搭載し,SEM像とBF-STEM (Bright Field Scanning Transmission Electron Microscope:明視野走査透過電子顕微鏡)像を得ることが 可能となっている。

酸化マグネシウム (MgO) 微粒子を試料とした SEM 像 と BF-STEM 像の観察例を図3に示す。サイコロ状の MgO 微粒子が連なっている様子が観察できる。SEM 像では表 面状態など試料の外観が、BF-STEM 像では試料の内部構 造が観察できる。また、孤立した MgO 微粒子を用いて回 折パターンを得た例を図4に示す。BF-STEM 像が示すよ うに、試料は大きさ約30 nmの直方体微粒子である。回 折パターンは微粒子の原子配列(格子定数0.21 nm)を示 し、また回折スポット周りを拡大すると、微粒子の形状を 反映したフリンジが出ていることがわかる。

このように、この装置を用いることで、試料の外観およ び内部構造観察と、回折パターンによる結晶性の解析が可 能となる。

4. 低エネルギー原子分解能イメージングの実証

原子分解能イメージングの実証では,SWCNT (Singlewall Carbon Nanotube:単層カーボンナノチューブ)を試 料として用いた¹⁰⁾。また,電子ビームのエネルギーは 30 keVとした。このエネルギーは,SWCNTがノックオ ンダメージを受ける閾(しきい)値(60 keV近傍¹¹⁾)より 十分に低く,グラフェンエッジのように結晶構造にはない 炭素原子に対する閾値(40 keV近傍¹¹⁾)よりも低いエネル ギーである。

SWCNTからの回折パターンと、計算機処理後の再構

ture article:

注:略語説明 CCD (Charge Coupled Device), SEM (Scanning Electron Microscope) 図2 | 試作した電子回折顕微鏡

装置外観(a)と鏡体構成(b)を示す。汎用SEMの鏡体(照射光学系)の下に, フィルム搬送機構を搭載し、回折パターンを記録できるようにした。

図3 | 酸化マグネシウム (MgO) 微粒子のSEM像 (a) とBF-STEM像 (b) サイコロ状微粒子の表面および内部の情報が, SEM像およびSTEM像から得 られる。

図4 孤立したMgO微粒子の回折パターン(a)とBF-STEM像(b),および 200回折スポットの拡大(c) 試料形状由来のフリンジが回折スポット周りに見られる。

成像を図1右に、再構成像の一部を拡大したものを図5(a) に示す。それに併せて、シミュレーション画像を同図(b) に、原子配置モデルを同図(c)にそれぞれ示す。SWCNT は炭素六角格子(グラフェンシート)を一巻きしたもので、 ビームが入射する面と出射する面とで六角格子の向きが異 なるため、両方の面の原子配列を合わせると、図5(c)で 示したように複雑な配列を示す。これらの像の比較から、 再構成像がSWCNTの原子配列を反映していることがわ かる(像の分解能は0.12 nm)。回折パターンから、 SWCNTの両面距離(CNTの直径)は約3.2 nmであるこ とがわかった。3 nm以上離れた面を両方とも原子分解能 0.12 nmで観察できることがこの手法の特長で、平行度の 高いビームを照射していることと、レンズレスイメージン グである(拡大レンズを使わない:図1参照)ことによる。

このように回折イメージングを用いることで,SWCNT のような立体構造に対して原子レベルの分解能でのイメー ジングが可能であることが示せた。また,再構成像〔図5 (a)〕で灰色矢じりと白矢じりで示したコントラストが, それぞれ孤立した炭素原子と,2個の炭素原子がオーバー ラップしたものであることが,原子配置モデルとの比較か らわかる。すなわち,得られた再構成像の強度分布は,炭 素原子1個と2個の違いを識別できる程度の定量性がある ことがわかった。

近年,電子顕微鏡では,像強度から原子番号の違いを識別する¹²⁾など,像強度の定量性が重要視されつつある。 この結果により,回折イメージングにおける定量的解析の 可能性を示すことができた。

注:略語説明 SWCNT (Single-wall Carbon Nanotube)

図5 | エネルギー30 keVの電子ビームを用いて得たSWCNTの再構成像 (a), シミュレーション画像 (b), および原子配列のモデル図 (c) 再構成像 (a) では, 灰色矢じり間にある2個の炭素原子 (間隔0.12 nm) が解像できている。原子配列モデル (c) から, 白矢じり間は2個の炭素原子が重なったコ ントラストで, 灰色矢じり間は孤立炭素原子のコントラストであることがわかる。

5. おわりに

ここでは,軽元素系複雑構造物質の低ダメージ観察を可 能とする回折顕微鏡技術について述べた。

回折イメージングを適用することで,カーボンナノ チューブのようにビームによるダメージを受けやすく立体 的で複雑な構造を有する試料に対して,試料ダメージの少 ない低エネルギー電子ビームを用いた場合でも原子分解能 でイメージングができることを示した。今後,軽元素材料 を中心とした新たな材料開発およびデバイス開発に,走査 電子顕微鏡をベースとしたこの装置および手法が貢献でき ることを期待する。

なおこの研究は、北海道大学郷原一寿教授のグループと の共同によるものである。また、この実証実験で用いた単 層カーボンナノチューブは、名古屋大学篠原久典教授のグ ループで作製された。この研究の一部は、独立行政法人科 学技術振興機構 (JST)の重点地域研究開発推進プログラ ム (育成研究)により行った。

参考文献

- 1) D. Sayre: Some implications of a theorem due to Shannon, Acta Crystallographica, Vol. 5, 843 (1952)
- J. Miao, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens, Nature, Vol. 400, 342-344 (1999)
- Y. Takahashi, et al.: Three-dimensional electron density mapping of shapecontrolled nanoparticle by focused hard X-ray diffraction microscopy, Nano Letters, Vol. 10, 1922-1926 (2010)
- 4) C. Song, et al. : Quantitative imaging of single, unstained viruses with coherent X rays, Physical Review Letters, Vol. 101, 158101 (2008)

- 5) Y. Nishino, et al. : Three-dimensional visualization of a human chromosome using coherent X-ray diffraction, Physical Review Letters, Vol. 102, 018101 (2009)
- H. Jiang, et al. : Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy, Proceedings of the National Academy of Science of the United States of America, Vol. 107, 11234-11239 (2010)
- U. Weierstall, et al. : Image reconstruction from electron and X-ray diffraction patterns using iterative algorithms: experiment and simulation, Ultramicroscopy, Vol. 90, 171-195 (2002)
- O. Kamimura, et al. : Diffraction microscopy using 20 kV electron beam for multiwall carbon nanotubes, Applied Physics Letters, Vol. 92, 024106 (2008)
 O. Kamimura, et al. : 10-kV diffractive imaging using newly developed
- O. Kamimura, et al.: 10-kV diffractive imaging using newly developed electron diffraction microscope, Ultramicroscopy, Vol. 110, 130-133 (2010)
- O. Kamimura, et al. : Low voltage electron diffractive imaging of atomic structure in single-wall carbon nanotubes, Applied Physics Letters, Vol. 98, 174103 (2011)
- 末永,外:有機単分子の高分解能電子顕微鏡観察,顕微鏡,Vol. 45, No.1, 31~ 36,日本顕微鏡学会(2010)
- 12) O. L. Krivanek, et al. : Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature, Vol. 464, 571-574 (2010)

執筆者紹介

上村 理

1994年日立製作所入社,中央研究所 ライフサイエンス研究センタ 計測システム研究部 所属 現在,電子回折顕微鏡の研究開発に従事 博士(工学) 日本顕微鏡学会会員,応用物理学会会員

土橋 高志

2006年日立製作所入社,中央研究所 ライフサイエンス研究センタ 計測システム研究部 所属 現在,電子回折顕微鏡の研究開発に従事 日本顕微鏡学会会員